

........

.......

0.0 ... 00

0.0 0.0 0 0 0

............ -----............

............

...

...

•

.

.

....................

S5900-24S4T2Q Switch **Technical White Paper**

After-sale Instructions for Error-prone Issues

Model: S5900-24S4T2Q

TECHNICAL WHITE PAPER

Contents

1. LACP Function Configuration Failure Issue	1
1.1 Issue Description	1
1.2 Topology Information	1
1.3 Handling Process	1
1.4 Root Cause	3
1.5 Solution	3
1.6 Suggestions and Conclusions	
2. Multicast PIM-SM Configuration Failure Issue	4
2.1 Problem Description	4
2.2 Topology Information	4
2.3 Handing Access	4
2.4 Root Cause	7
2.5 Solution	8
2.6 Suggestions and Conclusions	8
3. BVSS Establishment Failure Scenario Failure Issue	9
3.1 Problem Description	9
3.2 Topology Information	9
3.3 Handing Process	9
3.4 Root Cause	12
3.5 Solution	
3.6 Suggestions and Conclusions	12
4.802.1x Authentication Failure Issue	13
4.1 Problem Description	
4.2 Topology Information	13
4.3 Handing Process	13
4.4 Root Cause	16
4.5 Solution	
4.6 Suggestions and Conclusions	
5. Network Loop-MAC Address Drift Processing Issue	17
5.1 Problem Description	
5.2 Topology Information	
5.3 Handing Process	
5.4 Root Cause	20
5.5 Solution	
5.6 Suggestions and Conclusions	20
6. DHCP-Snooping Processing Scenario	21
6.1 Problem Description	21
6.1 Problem Description 6.2 Topology Information	21
6.1 Problem Description 6.2 Topology Information 6.3 Handing Process	
6.1 Problem Description 6.2 Topology Information 6.3 Handing Process 6.4 Root Cause	21 21 21 21 21 22
 6.1 Problem Description 6.2 Topology Information 6.3 Handing Process 6.4 Root Cause 6.5 Solution 	21 21 21 21 21 22 22 23

1. LACP Function Configuration Failure Issue

1.1 Issue Description

When the LACP function of the S5900 switch is configured, the LACP negotiation state is generated as the linedown state.

1.2 Topology Information

1.3 Handling Process

1. First use CRT software to connect to the device and create an aggregation group 1 on the device

S5900-1#config

S5900-1_config#interface port-aggregator 1

S5900-1_config_p1#quit

S5900-2#config

S5900-2_config#interface port-aggregator 1

S5900-2_config_p1#quit

2.Enter the interface configuration view and add the interface to the aggregation group to configure LACP mode. Both ends are configured in Passive mode.

S5900-1_config#int g0/1

S5900-1_config_g0/1#aggregator-group 1 mode lacp passive

S5900-1_config_g0/1#int g0/2

S5900-1_config_g0/2#aggregator-group 1 mode lacp passive

S5900-1_config_g0/2#int g0/3

S5900-1_config_g0/3#aggregator-group 1 mode lacp passive

S5900-2_config#int g0/1

S5900-2_config_g0/1#aggregator-group 1 mode lacp passive

S5900-2_config_g0/1#int g0/2

S5900-2_config_g0/2#aggregator-group 1 mode lacp passive

S5900-2_cor	nfig_g0/	/2#int g	0/3
-------------	----------	----------	-----

S5900-2_config_g0/3#aggregator-group 1 mode lacp passive

3. Check the status of lacp on the device at this time, (UI) is not in the aggregation group, indicating that the negotiation is not successful.

S5900-1#show aggregator-group 1 brief

Aggregator-group brief infomation

Group: 1 Speed: 1000 interval: 30

AggregatedCount: 0 LastAggregated:

LastDetached:

System ID : 32768 649D.9920.6C4B Partner : 0 0000.0000.0000

Group ID : 32768 649D.9920.6C4B state : lineDown

Max Ports : 32 ports : 3

Flags: D - down A - Use In port-aggregator

U - Up I - Not In port-aggregator

d - default

```
g0/3(UI) g0/1(UI) g0/2(UI)
```

4. Change an end to active mode

S5900-1_config#interface g0/1

S5900-1_config_g0/1#no aggregator-group

S5900-1_config_g0/1#interface g0/2

S5900-1_config_g0/2#no aggregator-group

S5900-1_config_g0/2#interface g0/3

S5900-1_config_g0/3#no aggregator-group

S5900-1_config_g0/3#aggregator-group 1 mode lacp active

S5900-1_config_g0/3#interface g0/2

S5900-1_config_g0/2#aggregator-group 1 mode lacp active

S5900-1_config_g0/2#interface g0/1

S5900-1_config_g0/1#aggregator-group 1 mode lacp active

5. Check the status of LACP on the device at this time, (UA).

S5900-1#show aggregator-group 1 brief
Aggregator-group brief infomation
Group: 1 Speed: 1000 interval: 30
AggregatedCount: 1 LastAggregated: 01-01 00:03:30
LastDetached:
System ID : 32768 649D.9920.6C4B Partner : 32768 649D.9921.54E2
Group ID : 32768 649D.9920.6C4C state : lineUp
Max Ports : 32 ports : 3
Flags: D - down A - Use In port-aggregator
U - Up I - Not In port-aggregator
d - default
g0/3(UA) g0/1(UA) g0/2(UA)

1.4 Root Cause

In summary, in Active mode, the switch actively initiates the aggregation negotiation process, while Passive mode passively accepts the aggregation negotiation process. When selecting LACP aggregation, the aggregation will not succeed if both sides of the port aggregation use Passive mode, because both ends will wait for the peer to initiate the aggregation negotiation process. There is also a situation where, for the occasional phenomenon, when interfacing with a friend's device LACP, the aggregation group does not allow vlan 1, the state of valn 1 is down, the state of LACP is linedown, and after vlan 1, the state of LACP is lineup.

1.5 Solution

When configuring LACP aggregation, avoid configuring Passive at both ends to ensure that at least one end is active. When interfacing with a friend's device, the state of LACP is linedown, and the protocol-status state of vlan 1 is down. You can try to allow vlan1 under the aggregation group.

1.6 Suggestions and Conclusions

After the configuration fails, it is recommended to check the configuration first to see whether the configuration is configured according to the specified configuration template.

2.1 Problem Description

When the multicast PIM-SM function of the S5900 switch is configured, the PC cannot receive multicast traffic. In the SSM model scenario, the multicast stream cannot be received.

2.2 Topology Information

2.3 Handing Access

1.First use CRT software to connect the devices and start global multicast on the two devices respectively

S5900-1_config#ip multicast-routing

S5900-2_config#ip multicast-routing

2.Create vlan2 on S5900-1 and configure the link type and allowed vlan.

S5900-1_config#vlan 2

S5900-1_config_vlan2#quit

S5900-1_config#int g0/1

S5900-1_config_g0/1#switchport mode trunk

S5900-1_config_g0/1#switchport trunk vlan-allowed 2

S5900-1_config_g0/1#quit

S5900-1_config#int g0/2

S5900-1_config_g0/2#switchport mode access

3. Create vlan2 on \$5900-2 and configure the link type and allowed vlan.

- S5900-2_config#vlan 2
- S5900-2_config_vlan2#quit
- S5900-2_config#int g0/1
- S5900-2_config_g0/1#switchport mode trunk
- S5900-2_config_g0/1#switchport trunk vlan-allowed 2

\$5900-2_config_g0/1#int g0/2

S5900-2_config_g0/2#switchport mode access

4.Configure pim-sm under the vlan process of the two devices. If you do not configure the corresponding port, you cannot send and receive pim-sm protocol messages.

S5900-1_config#int vlan1

S5900-1_config_v1#ip address 192.168.1.1 255.255.255.0

S5900-1_config_v1#ip pim-sm

S5900-1_config_v1#quit

S5900-1_config#int vlan 2

S5900-1_config_v2#ip address 10.1.1.1 255.255.255.0

S5900-1_config_v2#ip pim-sm

S5900-2_config#int vlan 1

S5900-2_config_v1#ip address 10.1.2.1 255.255.255.0

S5900-2_config_v1#ip pim-sm

S5900-2_config_v1#int vlan 2

S5900-2_config_v2#ip address 10.1.1.2 255.255.255.0

S5900-2_config_v2#ip pim-sm

5.Configure the IP address of the loopback0 interface on S5900-1 and enable PIM-SM. Let S5900-1 be RP.

S5900-1_config#int I0

S5900-1_config_I0#ip address 6.6.6.6 255.255.255.255

S5900-1_config_l0#ip pim-sm

S5900-1_config_l0#quit

6.Configure OSPF dynamic routing protocol between the two devices to make routing interoperable.

S5900-1_config#router ospf 1

S5900-1_config_ospf_1#network 10.1.1.1 255.255.255.255 area 0

S5900-1_config_ospf_1#network 6.6.6.6 255.255.255.255 area 0

S5900-1_config_ospf_1#network 192.168.1.0 255.255.255.0 area 0

S5900-2_config#router ospf 1

S5900-2_config_ospf_1#network 10.1.1.2 255.255.255.255 area 0

S5900-2_config_ospf_1#network 10.1.2.0 255.255.255.0 area 0

7. Check the ospf neighbor information to see if the neighbor is established.

S5900-1#show ip ospf neighbor

OSPF process: 1

FS

			AREA: 0		
Neighbor ID	Pri	State	DeadTime	Neighbor Addr	Interface
192.168.1.2	1	FULL/DR	31	10.1.1.2	VLAN2

8. Check the routing table on \$5900-2 to see if you learned the routing information of \$5900-1.

S5900-2#show ip route

Codes: C - connected, S - static, R - RIP, B - BGP, BC - BGP connected

D - BEIGRP, DEX - external BEIGRP, O - OSPF, OIA - OSPF inter area

ON1 - OSPF NSSA external type 1, ON2 - OSPF NSSA external type 2

OE1 - OSPF external type 1, OE2 - OSPF external type 2

DHCP - DHCP type, L1 - IS-IS level-1, L2 - IS-IS level-2, IA - ISIS inter-level

I - IPSEC type

VRF ID: 0

S	0.0.0/0	[1,0] via 10.32.133.254(on GigaEthernet0/0)
0	6.6.6/32	[110,2] via 10.1.1.1(on VLAN2)
С	10.1.1.0/24	is directly connected, VLAN2
С	10.1.2.0/24	is directly connected, VLAN1
С	10.32.132.0/23	is directly connected, GigaEthernet0/0
0	192.168.1.0/32	[110,2] via 10.1.1.1(on VLAN2)

9.To enable static RP on both devices, you need to specify the RP address on each PIM route. This address must be reachable on each device.

S5900-1_config#router pim-sm

S5900-1_config_ps#static-rp 6.6.6.6

S5900-2_config#router pim-sm

S5900-2_config_ps#static-rp 6.6.6.6

10.View the pim-sm neighbor information on the switch.

S5900-2#show ip pim-sm neighbor

PIM-SMv2 Neighbo	or Table		
Neighbor	Interface	Uptime/Expires	DR
Address			Prior
10.1.1.1	v2	00:05:32/00:01:15	1
11. Enable the SSM	function and configure the	e SSM group range. You	a can also use the default 232.0.0.0/8 as the SSM group range.
S5900-1_config#ro	uter pim-sm		
S5900-1_config_ps	#ssm range grp_range		
S5900-1_config_ps	#quit		
S5900-1_config#ip	access-list standard grp_ra	nge	
S5900-1_config_st	d#permit 224.1.2.3 255.255	.255.255	
S5900-2_config#ro	uter pim-sm		
S5900-2_config_ps	#ssm range grp_range		

S5900-2_config_ps#quit

S5900-2_config#ip access-list standard grp_range

S5900-2_config_std#permit 224.1.2.3 255.255.255.255

12.Use VLC to simulate multicast source

13.On the PC, select IGMPv3, select the multicast group and multicast source, and capture packets. The multicast stream can be seen as follows.

No.	Time	Source	Destination	Protocc	Lengt Info
10255	556.453000	192.168.1.3	224.1.2.3	UDP	1370 4193 → 0 Len=1328
10256	556.766000	192.168.1.3	224.1.2.3	UDP	1370 4193 → 0 Len=1328
10257	556.938000	192.168.1.3	224.1.2.3	UDP	1370 4193 → 0 Len=1328
10258	556.938000	192.168.1.3	224.1.2.3	UDP	1370 4193 → 0 Len=1328
10259	556.938000	192.168.1.3	224.1.2.3	UDP	1370 4193 → 0 Len=1328
10260	556.938000	192.168.1.3	224.1.2.3	UDP	1370 4193 → 0 Len=1328
10261	556.938000	192.168.1.3	224.1.2.3	UDP	1370 4193 → 0 Len=1328
10262	557.109000	192.168.1.3	224.1.2.3	UDP	1370 4193 → 0 Len=1328
10263	557.281000	192.168.1.3	224.1.2.3	UDP	1370 4193 → 0 Len=1328
10264	557.438000	192.168.1.3	224.1.2.3	UDP	1370 4193 → 0 Len=1328
10265	557.438000	192.168.1.3	224.1.2.3	UDP	1370 4193 → 0 Len=1328
10266	557.438000	192.168.1.3	224.1.2.3	UDP	1370 4193 → 0 Len=1328
10267	557.438000	192.168.1.3	224.1.2.3	UDP	1370 4193 → 0 Len=1328
10268	557.438000	192.168.1.3	224.1.2.3	UDP	1370 4193 → 0 Len=1328
10269	557.438000	192.168.1.3	224.1.2.3	UDP	1370 4193 → 0 Len=1328
10270	557.438000	192.168.1.3	224.1.2.3	UDP	1370 4193 → 0 Len=1328
10271	557.766000	192.168.1.3	224.1.2.3	UDP	1370 4193 → 0 Len=1328
10272	557.938000	192.168.1.3	224.1.2.3	UDP	1370 4193 → 0 Len=1328
10273	557.938000	192.168.1.3	224.1.2.3	UDP	1370 4193 → 0 Len=1328
10274	557.938000	192.168.1.3	224.1.2.3	UDP	1370 4193 → 0 Len=1328
10275	557.938000	192.168.1.3	224.1.2.3	UDP	1370 4193 → 0 Len=1328
10276	557.938000	192.168.1.3	224.1.2.3	UDP	1370 4193 → 0 Len=1328
10277	557.938000	192.168.1.3	224.1.2.3	UDP	1370 4193 → 0 Len=1328
10278	558.266000	192.168.1.3	224.1.2.3	UDP	1370 4193 → 0 Len=1328
10280	558.438000	192.168.1.3	224.1.2.3	UDP	1370 4193 → 0 Len=1328
10281	558.438000	192.168.1.3	224.1.2.3	UDP	1370 4193 → 0 Len=1328
10282	558.438000	192.168.1.3	224.1.2.3	UDP	1370 4193 → 0 Len=1328
10283	558.438000	192.168.1.3	224.1.2.3	UDP	1370 4193 → 0 Len=1328

2.4 Root Cause

In summary, if pim-sm is not enabled on the interface, the port cannot receive pim protocol messages. In the SSM scenario, if the multicast

address is not within the specified SSM group range, the multicast source information cannot be passed to the receiver.

2.5 Solution

Before configuring basic pim-sm functions, you need to ensure the configuration of unicast routing to ensure that the network layer in the domain is reachable. When configuring the pim-sm protocol, it is recommended to enable pim-sm on all its non-border interfaces. If the multicast group is not within the default 232.0.0.0/8 group range, it is recommended to manually configure the SSM group range

2.6 Suggestions and Conclusions

When configuring pim-ssm, the ssm group uses the manually configured group range.

3. BVSS Establishment failure Scenario Failure Issue

3.1 Problem Description

On S5900 switches, the stack is called BVSS, but during the configuration of the stack, the stack cannot be negotiated.

3.2 Topology information

3.3 Handing Process

3.3.1 First connect the device using CRT software, and configure the virtualization ports on the two devices.

S5900-1_config#bvss

S5900-1_config_bvss#bvss interface 1 type tGigaEthernet port 23 group 1

S5900-1_config_bvss#bvss interface 2 type tgigaEthernet port 24 group 1

s5900-2_config#bvss

s5900-2_config_bvss#bvss interface 1 type tGigaEthernet port 23 group 2

s5900-2_config_bvss#bvss interface 2 type tGigaEthernet port 24 group 2

3.3.2 Configure the virtualization mode of the two devices separately.

There are two modes, Normal mode only supports 2 device virtualization, Enhanced mode supports up to 4 device virtualization, but

currently the device only supports normal mode.

S5900-1_config#bvss

S5900-1_config_bvss#bvss mode normal

s5900-2_config#bvss

s5900-2_config_bvss#bvss mode normal

3.3.3 Configure the virtualization domain to which the two devices belong.

S5900-1_config_bvss#bvss domain-id 1

s5900-2_config_bvss#bvss domain-id 1

3.3.4 Configure the virtualized member numbers of the two devices separately.

S5900-1_config_bvss#bvss member-id 1

s5900-2_config_bvss#bvss member-id 2

3.3.5 Configure the virtualization priority of the two devices separately

S5900-1_config_bvss#bvss priority 150

s5900-2_config_bvss#bvss priority 100

3.3.6 Enable virtualization

S5900-1_config#bvss

S5900-1_config_bvss#bvss enable

S5900-2_config#bvss

S5900-2_config_bvss#bvss enable

3.3.7 Save the virtualization configuration and restart the device.

S5900-1#write bvss-config

S5900-1#reboot

S5900-2#write bvss-config

S5900-2#reboot

3.3.8 After the restart, the stack negotiation is established. You can use the command to view the port to see the stack establishment.

Switch>enable

Switch#show interface brief

Port	Description	Status	Vla	an	Dup	olex	Speed	Туре
g0/0		up				full	1000Mb	1000BASE-TX
g1/0/1		shutdov	vn	1		auto	auto	Giga-TX
g1/0/2		shutdov	vn	1		auto	auto	Giga-TX
g1/0/3		shutdov	vn	1		auto	auto	Giga-TX
g1/0/4		shutdov	vn	1		auto	auto	Giga-TX
g2/0/1		shutdov	vn	1		auto	auto	Giga-TX
g2/0/2		shutdov	vn	1		auto	auto	Giga-TX
g2/0/3		shutdov	vn	1		auto	auto	Giga-TX
g2/0/4		shutdov	vn	1		auto	auto	Giga-TX
tg1/0/1		shutdow	/n	1	1	full	10000MI	o 10Giga-FX
tg1/0/2		shutdow	/n	1		full	10000MI	o 10Giga-FX
tg1/0/3		shutdow	/n	1	1	full	10000MI	o 10Giga-FX
tg1/0/4		shutdow	/n	1		full	10000MI	o 10Giga-FX
tg1/0/5		shutdow	/n	1		full	10000MI	o 10Giga-FX
tg1/0/6		shutdow	/n	1		full	10000MI	o 10Giga-FX
tg1/0/7		shutdow	/n	1		full	10000MI	o 10Giga-FX
tg1/0/8		shutdow	/n	1		full	10000MI	o 10Giga-FX
tg1/0/9		shutdow	/n	1		full	10000MI	o 10Giga-FX
tg1/0/10)	shutdow	/n	1		full	10000MI	o 10Giga-FX
tg1/0/11		shutdow	/n	1		full	10000M	o 10Giga-FX
tg1/0/12	2	shutdow	/n	1		full	10000MI	o 10Giga-FX
tg1/0/13	3	shutdow	/n	1		full	10000MI	o 10Giga-FX
tg1/0/14	1	shutdow	/n	1		full	10000M	o 10Giga-FX
tg1/0/15	5	shutdow	/n	1		full	10000M	o 10Giga-FX
tg1/0/16	5	shutdow	n	1		full	10000MI	o 10Giga-FX
tg1/0/17	7	shutdow	n	1		full	10000MI	o 10Giga-FX
tg1/0/18	3	shutdow	/n	1		full	10000M	o 10Giga-FX
tg1/0/19)	shutdow	/n	1		full	10000M	o 10Giga-FX
tg1/0/20)	shutdow	n	1		full	10000MI	o 10Giga-FX
tg1/0/21		shutdow	n	1		full	10000M	o 10Giga-FX

tg1/0/22	shutdown	1	full	10000Mb	10Giga-FX
tg1/0/23	up	1	full	10000Mb	10Giga-FX
tg1/0/24	up	1	full	10000Mb	10Giga-FX
tg2/0/1	shutdown	1	full	10000Mb	10Giga-FX
tg2/0/2	shutdown	1	full	10000Mb	10Giga-FX
tg2/0/3	shutdown	1	full	10000Mb	10Giga-FX
tg2/0/4	shutdown	1	full	10000Mb	10Giga-FX
tg2/0/5	shutdown	1	full	10000Mb	10Giga-FX
tg2/0/6	shutdown	1	full	10000Mb	10Giga-FX
tg2/0/7	shutdown	1	full	10000Mb	10Giga-FX
tg2/0/8	shutdown	1	full	10000Mb	10Giga-FX
tg2/0/9	shutdown	1	full	10000Mb	10Giga-FX
tg2/0/10	shutdown	1	full	10000Mb	10Giga-FX
tg2/0/11	shutdown	1	full	10000Mb	10Giga-FX
tg2/0/12	shutdown	1	full	10000Mb	10Giga-FX
tg2/0/13	shutdown	1	full	10000Mb	10Giga-FX
tg2/0/14	shutdown	1	full	10000Mb	10Giga-FX
tg2/0/15	shutdown	1	full	10000Mb	10Giga-FX
tg2/0/16	shutdown	1	full	10000Mb	10Giga-FX
tg2/0/17	shutdown	1	full	10000Mb	10Giga-FX
tg2/0/18	shutdown	1	full	10000Mb	10Giga-FX
tg2/0/19	shutdown	1	full	10000Mb	10Giga-FX
tg2/0/20	shutdown	1	full	10000Mb	10Giga-FX
tg2/0/21	shutdown	1	full	10000Mb	10Giga-FX
tg2/0/22	shutdown	1	full	10000Mb	10Giga-FX
tg2/0/23	up	1	full	10000Mb	10Giga-FX
tg2/0/24	up	1	full	10000Mb	10Giga-FX
qtg1/0/1	shutdown	1	full	40000Mb	40Giga-FX
qtg1/0/2	shutdown	1	full	40000Mb	40Giga-FX
qtg2/0/1	shutdown	1	full	40000Mb	40Giga-FX
qtg2/0/	shutdown	1	full	40000Mb	40Giga-FX
v1	up				
n0	up				

3.3.9 View virtualization information through commands.

Switch#show bvss management

bvss member 1 management information:

active member: 1, standby member: 2

Igroup: 1-2, rgroup:

orphan group:-1, normal group:-1

HT[l]:, HT[r]: ,HT[a]:

internal topology:0, global topology: LINE-TOPO

L to member 1: unknown R to member 1: unknown

L to member 2: 1 R to member 2:unknown

L to member 3: unknown R to member 3:unknown

GFS

L to member 4: unknown R to member 4:unknown

hg route

to member 1: local

to member 2: l

to member 3: unreachable

to member 4: unreachable

3.3.10 Display the status information of RNP through commands, and you can view the role of each member device negotiated in the virtualization domain.

Switch#show bvss rnp

RNP is running. CfgPri 150, SwitchType 0x10eb, Slot 0 System started, ignoreTimeoutCnt 0 DomainId 1, Memberld 1, LoopTopology 0, Merge 0, Master State MasterMemId 1, BackupMemId 2, MasterGlbMacAddr 649d.9920.6c4b OldMasterMemberld 0, OldMasterWhile 0, txAdvPduCnt 75 IacpMad: OldActiveld 0, OldActiveWhile 0, ActiveWhile 0

bvss link group 1 is usable, bvss link group 2 is not usable.

Pri info for member 1 (SwitchType 10eb, slot 0): Priority 150, RunningTime 442, MAC 649d.9920.6c4b

Pri info for member 2 (SwitchType 10eb, slot 0): Priority 100, RunningTime 437, MAC 649d.9921.54e2

3.4 Root Cause

1. The configuration virtualization mode is incorrect. Currently, the device only supports normal mode, and supports up to two devices stacked.

2. BVSS uses a virtual domain to manage the same set of virtualized devices. Devices in the same virtual domain are virtualized, and each member device in the virtual domain has a different number.

3. After the BVSS configuration is ok, you must save the BVSS configuration before restarting the switch to take effect.

3.5 Solution

- 1. It is currently recommended that up to two devices do BVSS.
- 2. Two devices with different numbers in the same domain.
- 3. The switch version must be consistent.

3.6 Suggestions and Conclusions

When using the BVSS function on an S5900 device, it is recommended to use up to two devices and the mode is normal. The current running configuration of virtualization refers to the running virtualized configuration of the device. The current virtualized configuration is a configuration that the user may modify or add during the running of the virtualization. These configurations do not take effect. You need to save and restart the device to take effect. Keep in mind that the software version must be consistent when configuring BVSS. If they are inconsistent, a device will restart infinitely or the stack will not be established.

4. 802.1x Authentication Failure Issue

4.1 Problem Description

On the S5900 switches, when the dot1x function is used, the interaction between the AAA server and the device is normal, and the PC authentication fails.

4.2 Topology Information

4.3 Handing Process

1.First use CRT software to connect the device, specify the radius server address and pre-shared key, so that the device can pass the authentication information to the AAA server.

S5900_config#radius-server host 10.32.133.248

S5900_config#radius-server key Aa123456

2. Enable 802.1x authentication globally and enable authentication on the port connected to the PC.

S5900_config#dot1x enable

S5900_config#int g0/2

S5900_config_g0/2#dot1x port-control auto

3. Configure AAA authentication parameters.

S5900_config#aaa authentication dot1x fs-g0/2 group radius

S5900_config#aaa accounting network fs_acc start-stop group radius

4.Configure 802.1x re-authentication and authentication cycle to ensure the legitimacy of the authentication client.

S5900_config#dot1x re-authentication

S5900_config#dot1x timeout re-authperiod 10

5.Enabling 802.1x guest-vlan will give the corresponding port limited access rights when the client does not respond.

Initially, the guest-vlan id of each port is 0. At this time, even if the global guest-vlan function is turned on, it will not work. Only in the port configuration mode, after the guest-vlan id is configured, the guest-vlan works

S5900_config#dot1x guest-vlan

6.Call the AAA authentication parameters under the interface and set the authentication type to eap.

S5900_config#int g0/2

S5900_config_g0/2#dot1x authentication method fs-g0/2

S5900_config_g0/2#dot1x accounting enable

S5900_config_g0/2#dot1x accounting method fs_acc

S5900_config_g0/2#dot1x authentication type eap

7.Use 802.1x authentication on the PC, enter the username and password of the AAA server resource pool, and the authentication is successful.

8.Use commands on the device to view dot1x information.

Switch#show do	t1x
----------------	-----

802.1X	Parameters
--------	------------

- reAuthen Yes
- reAuth-Period 10
- quiet-Period 60
- Tx-Period 30
- Supp-timeout 30
- Server-timeout 30
- reAuth-max
- max-request 3
- authen-type Eap

IEEE 802.1x on port g0/2 enabled

5

defVlanID: 1

currentVlanID: 1

formerVlanID: 0

voice_vlanID: 0

IEEE 802.1x accounting on port g0/2 enabled

Authen Type	Eap
Authen Method	fs-g0/2
Account Method	fs_acc
Accounting	True
Permit Users	All Users
Permit Macs	All Macs
Multiple Auth	Disallowed(current 0)
Multiple hosts	Disallowed

Current Supplicant	fs(8cec.4bad.036b)
Authorized	Yes
Current Identifier	154
Authenticator State Machine	
State	Authenticated
Reauth Count	0
auth vlan	1
Backend State Machine	
State	Idle
Request Count	0
Identifier (Server)	153
Port Timer Machine	
Auth Tx While Time	27
Backend While Time	177
Backend accWhile Time	147
Backend updateWhile Time	0
reAuth Wait Time	7
Hold Wait Time	0
Misc Mab AgingWhile	0
Last Time After Rx Packet from	Supplicant3

9. View log information on the AAA server.

RADIUS Authentication Details

Generated At: 2020-04-09 11:39:22.361

Authentication Summary	
Logged At:	2020-04-09 11:38:59.631
RADIUS Status:	Authentication succeeded
NAS Failure:	
Username:	fs
MAC/IP Address:	8C-EC-4B-AD-03-6B
Network Device:	alex-sw1
Access Service:	Default Network Access
Identity Store:	Internal Users
Authorization Profiles:	Permit Access
CTS Security Group:	
Authentication Method:	MSCHAPV2
Authentication Result	
	{User-Name=fs; Class=CACS:ACS/375606312/170; }
Session Events	
	2020-04-09 11:38:59.631
	Radius authentication passed for USER: fs MAC: 8C-EC-48-AD-03-68 AUTHTYPE: PEAP(EAP-MSCHAPv2)
	Radius authentication passed
Authentication Details	
Logged At:	2020-04-09 11:38:59.631
ACS Time:	2020-04-09 11:38:59.615
ACS Instance:	ACS
Authentication Method:	MSCHAPV2
EAP Authentication Method:	EAP-MSCHAPv2

4.4 Root Cause

In summary, when the pre-shared key configured on the device is inconsistent with the pre-shared key added on the AAA server, the device cannot pass the authentication information to the AAA server, resulting in authentication failure. Inconsistent eap-type between the PC and the AAA server can also cause authentication failure.

4.5 Solution

When the PC authentication fails, the following factors may be considered:

4.5.1 Whether the parameters configured on the device are ok and whether the pre-shared key is consistent with the server.

4.5.2 Whether the authentication protocol on the PC side is allowed to pass on the AAA server, and whether there is the user name and password entered during the authentication on the PC side. Whether the Eap-type is consistent with the PC.

4.6 Suggestions and Conclusions

First of all, we must ensure that the interaction between the device and the AAA server is normal. You can read the log information of the AAA server during the process to obtain the cause of the problem.

5. Network Loop-MAC Address Drift Processing Issue

5.1 Problem Description

During the operation of the S5900 switch, a loop in the network caused the device memory, cpu to fill up, and the PC to freeze.

5.2 Topology Information

5.3 Handing Process

5.3.1 Use CRT software to connect the devices first, and close the spanning tree globally on the two devices.

S5900-1_config#no spanning-tree

S5900-2_config#no spanning-tree

5.3.2 Add the G0/1 and G0/2 interfaces of the S5900-1 device to VLAN 10, add the G0/1 and G0/2 interfaces of the S5900-2 device to VLAN 10, and add the IP addresses of the S5900-1 and S5900-2 to the VLAN 10 interface Configured on the same network segment, PC1 connects to the g0/3 interface of the S5900-1 switch.

S5900-1_config#vlan 10
S5900-1_config_vlan10#quit
S5900-1_config#interface vlan 10
\$5900-1_config_v10#ip address 192.168.1.1 255.255.255.0
S5900-1_config_v10#quit
S5900-1_config#interface g0/1
S5900-1_config_g0/1#switchport mode access
S5900-1_config_g0/1#switchport pvid 10
S5900-1_config_g0/1#interface g0/2
S5900-1_config_g0/2#switchport mode access
S5900-1_config_g0/2#switchport pvid 10
S5900-1_config_g0/2#interface g0/3
S5900-1_config_g0/3#switchport mode access
S5900-1_config_g0/3#switchport pvid 10

GFS

S5900-1_config_g0/3#quit

S5900-2_config#vlan 10

S5900-2_config_vlan10#quit

S5900-2_config#interface vlan 10

S5900-2_config_v10#ip address 192.168.1.2 255.255.255.0

S5900-2_config_v10#quit

S5900-2_config#interface g0/1

S5900-2_config_g0/1#switchport mode access

S5900-2_config_g0/1#switchport pvid 10

S5900-2_config_g0/1#interface g0/2

S5900-2_config_g0/2#switchport mode access

S5900-2_config_g0/2#switchport pvid 10

S5900-2_config_g0/2#quit

5.3.3 Configure the IP to 192.168.1.3 on the PC. At this time, the PC is abnormally stuck and the network has a loop. Check the MAC address table of the S5900-1 device and find that the MAC address drifts.

S5900-	1#show mac address-	table	
	Mac Address Table	(Total 1)	
Vlan	Mac Address	Туре	Ports
10	8cec.4bad.036b	DYNAMIC	g0/2
S5900-	1#show mac address-	table	
	Mac Address Table	(Total 1)	
Vlan	Mac Address	Туре	Ports
Viali	Mac Address	туре	10113
10	8cec.4bad.036b	DYNAMIC	g0/1
5.3.4 St	tart spanning tree und	ler global con	figuration on both switches.
\$5000	1 config#spanning to	200	
55500-	_comg#spanning-ti		

S5900-2_config#spanning-tree

5.3.5 At this time, the MAC address drift ends and the network returns to normal. View spanning tree information.

S5900-1#show spanning-tree

Spanning tree enabled protocol RSTP(2004)

RSTP

Root ID	Priority	32768	;					
	Address	649	9D.9920.6C4B					
	This bridg	e is the						
	Hello Time	e 2 sec	Max Age 20 sec	Forward Delay 15 sec				

Bridge ID Priority 32768

Address 649D.9920.6C4B

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

Interface	Role Sts Cost	Pri.Nbr Type	
g0/1	Desg FWD 20000	128.17	P2p
g0/2	Desg FWD 20000	128.18	P2p
g0/3	Desg FWD 200000	128.19	Edge

S5900-2#show spanning-tree

Spanning tree enabled protocol RSTP(2004)

RSTP

Root ID	Priority	32768
	Address	649D.9920.6C4B
	Port	GigaEthernet0/1
	Cost	20000

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
Bridge ID Priority 32768
Address 649D.9921.54E2
Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
Interface Role Sts Cost Pri.Nbr Type
g0/1 Root FWD 20000 128.17 P2p
g0/2 Altn BLK 20000 128.18 P2p
5.3.6 It can be seen that the g0/2 interface of \$5900-2 is blocked, and the network loop has been released.

5.3.7 There is no drift in the MAC address table on the switch, and the results also correspond to each other.

S5900-1	S5900-1#show mac address-table						
	Mac Address Table (Total 2)						
Vlan	Mac Address	Туре	Ports				
10	8cec.4bad.036b	DYNAMIC	g0/3				
10	649d.9921.54e2	DYNAMIC	g0/1				

5.4 Root Cause

In summary, a loop occurs on the bottom network of the device, causing ARP broadcast storms, causing PC-side stalls and MAC address drift.

5.5 Solution

1. Turn on protocols such as spanning tree to prevent loops.

- 2. Shut down or unplug the link port.
- 3. Add the link to the aggregation group so that the two links are logically one link.

5.6 Suggestions and Conclusions

When the MAC address drift phenomenon occurs in the service environment, you can choose the appropriate solution to deal with the needs of the business; when the MAC address drift phenomenon occurs, the sooner the better, otherwise the memory of the switch device will be consumed unrestricted, causing cards Phenomenon such as lag or network shock.

6. DHCP-Snooping Processing Scenario

6.1 Problem Description

The DHCP-Snooping function is configured during the operation of the S5900 switch, but when the PC obtains the IP address, it cannot obtain the IP address.

6.2 Topology Information

6.3 Handing Process

1. First use CRT software to connect to the device, configure the dhcp service and address pool on the S58 switch, and enable dhcp on the interface.

Switch(config)# service dhcp enable
Switch(config)# dhcp server
Switch(config)# dhcp pool pool1
Switch(config-dhcp)# network 172.16.30.0/24
Switch(config-dhcp)# gateway 172.16.30.1
Switch(config-dhcp)# quit
Switch(config)# int eth-0-1
Switch(config-if)# ip address 172.16.30.1/24
Switch(config-if)# dhcp server enable
2.The DHCP-Snooping function must be enabled on the S5900 device.
S5900_config#ip dhcp-relay snooping
3.Create a vlan on the S5900 device and configure the interface link type.
S5900_config#vlan 2
S5900_config_vlan2#quit
S5900_config#int g0/1
S5900_config_g0/1#switchport mode access
S5900_config_g0/1#switchport pvid 2
S5900_config_g0/1#quit
S5900_config#int g0/2
S5900_config_g0/2#switchport mode access
S5900_config_g0/2#switchport pvid 2
4.Start the DHCP-Snooping function on the VLAN, and perform legalization check on the DHCP messages received by all untrusted
physical ports belonging to the entire VLAN.
S5900_config#ip dhcp-relay snooping vlan 2
Freeholden DUCD and an all freedom to the law When the analysis free to the law and a description of the set of

5.Enable the DHCP anti-attack function on the vlan. When the number of users in the vlan reaches the configured maximum allowable value, new clients are not allowed to allocate.

S5900_config#ip dhcp-relay snooping vlan 2 max-client 10

6.If the interface is configured as a DHCP trusted interface, the DHCP messages received by the interface will not be checked.

S5900_config#interface g0/1

S5900_config_g0/2#dhcp snooping trust

7. Configure the interface ARP detection function. For the ARP monitoring trust interface, the ARP monitoring function is not enabled. The interface defaults to an untrusted interface.

S5900_config#int g0/2

S5900_config_g0/2#arp inspection trust

8.Start the IP source address detection function on the vlan to detect the binding relationship between the MAC and the IP address.

S5900_config#ip verify source vlan 2

9.Use commands to view DHCP-Snooping configuration information.

S5900#show ip dhcp-relay snooping

ip dhcp-relay snooping

ip dhcp-relay snooping vlan 2

ip verify source vlan 2

ip dhcp-relay snooping vlan 2 max-client 10

DHCP Snooping trust interface:

g0/1

ARP Inspect trust interface:

g0/2

IP source guard trust interface:

DHCP Snooping deny interface:

ip dhcp-relay snooping db-file /dhcpr-database

10.At this time, start the network card on the PC to obtain the IP address automatically, for getting the IP address.

11.Use the command to view the address binding entries that take effect on the interface.

S5900#show ip dł	ncp-relay snooping	y binding						
Hardware Address	IP Address	Surplus Time	Туре	VLAN I	ntf			
 8c:ec:4b:ad:03:6b	 172.16.30.2	86220	 DHCP_SN	 2	g0/2			
6.3.12 Check the as	signed IP address i	n DHCP-Server a	s follows.					
Switch## show dhc	p server binding al	I						
IP address C	lient-ID/	Lease expir	ation		Туре			
	Hardware address	S						
172.16.30.2 8	c:ec:4b:ad:03:6b	Fri 2020.0	04.10 12:38:0)3 E	Dynamic			

6.4 Root Cause

In summary, after the DHCP-Snooping function is enabled, the PC cannot obtain an IP address or obtain an illegal IP address. The reasons are as follows

1. The trusted port is not enabled on the DHCP-Server port.

2. The number of clients exceeds the maximum number of clients, and the device will not allocate new clients.

3. I use dynamic binding here. If it is static binding, the assigned IP address is not the bound IP address, and the PC cannot obtain the IP

address.

6.5 Solution

1. Configure the port connected to the switch on the DHCP-Server as a trusted port. The DHCP messages received by the untrusted interface on the interface will be checked.

2. If the terminal is a dumb terminal, the IP address is relatively fixed, it is recommended to manually configure the static binding table.

3. The IP address cannot be obtained on the PC side. It is also possible that the network server and the client are on the same network segment, and there is no DHCP relay. There should be no proxy field prompt. DHCP SNOOPING has the option option enabled by default, resulting in the failure to obtain the IP address.

6.6 Suggestions and Conclusions

When configuring the DHCP-Snooping function, when the device is connected to the correct DHCP Server, the interface must be configured as a trusted interface. Prevent illegal IP addresses from being obtained on untrusted interfaces.

https://www.fs.com

The information in this document is subject to change without notice. FS has made all efforts to ensure the accuracy of the information, but all information in this document does not constitute any kind of warranty.

Copyright © 2009-2022 FS.COM All Rights Reserved.