

50GBASE-SR SFP56 850nm 100m DOM Transceiver

Application

25G&50G BASE-SR

Standards

- SFF-8402
- OIF-CEI-04.0
- SFF-8419
- IEEE802.3cd
- SFF-8472

Features

- Supports 25.78Gb/s NRZ and 53.125Gb/s PAM4
- Hot-pluggable SFP56 Footprint
- 850nm VCSEL Laser and Pin Photo-Detector
- Internal CDR on Transmitter and Receiver Channel
- Duplex LC Connector
- Low Power Consumption < 1.5W
- Link Lengths at 25.78G NRZ and 53.125G PAM4 100m over OM4 MMF
- Single $+3.3V \pm 5\%$ Power Supply
- Operating Temperature Range: 0°C to 70°C
- Digital Monitoring SFF-8472 Compliant

www.fs.com

1

Description

The 50G SR short-wavelength transceiver is designed for use in 25.78G NRZ and 53.125Gb/s PAM4 data rate over multimode fiber. The transceiver is compliant with SFF-8402, and the mechanical SFP+ plug is compatible with SFF-8432. Digital diagnostics functions are available via a 2-wire serial interface, as specified in SFF-8472.

Product Specifications

I. Absolute Maximum Ratings

Parameter	Symbol	Unit	Min.	Max.
Storage Temperature Range	Ts	°C	-40	85
Relative Humidity	RH	%	0	85
Supply Voltage	V _{cc}	V	-0.3	4.0

II. Recommended Operating Conditions

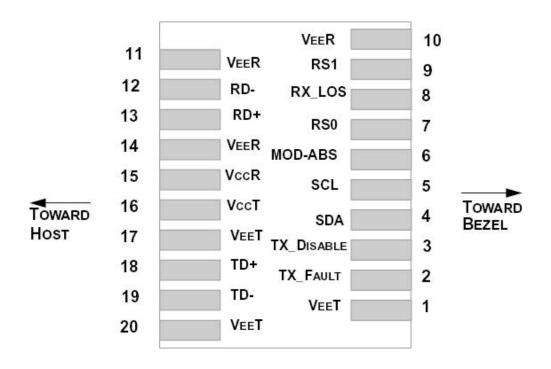
Parameter	Symbol	Unit	Min.	Тур.	Max.
Operating Case Temperature Range	Тс	°C	0		70
Power Supply Voltage	Vcc	V	3.1	3.3	3.465
Bit Rate	BR	Gb/s		25.78/	53.125
Bit Error Ratio	BER				5*1E-5
Max. Supported Link Length	L	m			100

III. Electric Characteristics

Parameter	Symbol	Unit	Min.	Тур.	Max.	Note
Supply Voltage	V _{CC}	V	3.1	3.3	3.465	
Supply Current	lcc	mA			450	
		Transmitter				
Input Differential Impedance	R _{IN}	Ω	80	100	120	1
Single Ended Data Input Swing	V_{IN}	mVp-p	90		500	
Transmit Disable Voltage	V_{DIS}	V	2		V_{CCHOST}	
Transmit Enable Voltage	V_{EN}	V	V_{EE}		V _{EE} +0.8	
Transmit Fault Assert Voltage	V_{FA}	V	2		V_{CCHOST}	
Transmit Fault De-Assert Voltage	V_{FDA}	V	V_{EE}		V _{EE} +0.8	
		Receiver				
Single Ended Data Output Swing	V_{OD}	mVp-p	200		500	
LOS Fault	V_{LOSFT}	V	2		V_{CCHOST}	
LOS Normal	V_{LOSNR}	V	V_{EE}		V _{EE} +0.8	

NOTE 1: Differential between TD+ / TD-

IV. Optical Characteristics


(Tested under recommended operating conditions, unless otherwise noted)

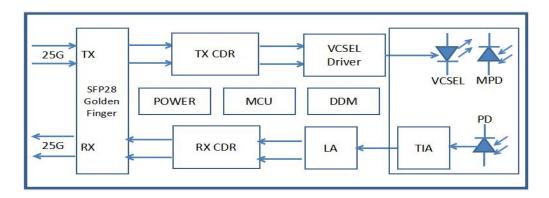
(Tested under recommended operating conditions, unless otherwise noted)									
Parameter	Symbol	Unit —	2	5.78Gb/	's	53	3.125Gb	/s	Note
i didiletei	Symbol		Min.	Тур.	Max.	Min.	Тур.	Max.	
		Tran	smitter						
Modulation Format				NRZ			PAM4		
Nominal Wavelength	λ	nm	840		860	840		860	
RMS Spectral Width	Δλ	nm			0.6			0.6	
Tx OMA per Lane	TxOMA	dBm	-6.4		3	-4.5		3	
Optical Output Power	Pav	dBm	-8.4		2.4	-6.5		4	
Extinction Ratio	ER	dB	2			3			
Launch Power in OMA Outer Minus TDECQ (Min)		dBm				-5.9			
Optical Return Loss Tolerance	ORL	dB			12			12	
Encircled Flux	FLX	dBm				>8<	36% at 19u	ım	
Encircled Flux	TEX	dbiii				<3	0% at 4.5เ	ım	
TDECQ		dB						4.5	
Average Launch Power of OFF Transmitter	P _{OFF}	dBm			-30			-30	
Receiver									
Modulation Format				NRZ			PAM4		
Center Wavelength	λ	nm	840		860	840		860	
Damage Threshold	DT	dBm	3.4			5			

Davamatav	Complete All III	Unit	25.78Gb/s		53.125Gb/s		Note		
Parameter	Symbol		Min.	Тур.	Max.	Min.	Тур.	Max.	
Receiver									
Max. Average Receiver Power (Overload)	P _{AVG}	dBm			2.4			4	
Receive Power (OMAOuter) (Overload)		dBm			3			3	
Stressed Receiver Sensitivity (OMA)	R _{SENSE1}	dBm			-5.2			-3.4	
Receiver Reflectance	R_{REFL}	dB			-12			-12	
Max. Receiver Sensitivity (OMAouter)	R _{SENSE2}	dBm			-10.3			-6.5	

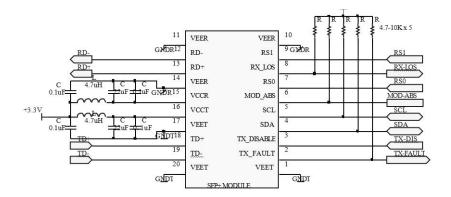
V. Pin Function Definitions

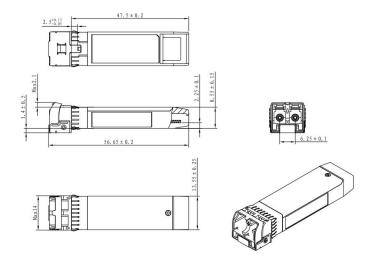
VI. Transceiver Pin Descriptions

Pin Number	Symbol	Name	Description			
1,17,20	VeeT	Transmitter Signal Ground	These Pins Should Be Connected to Signal Ground on the Host Board.			
2	TX Fault	Transmitter Fault Out (OC)	$Logic~``1"~Output = Transmitter~Fault\\ Logic~``0"~Output = Normal~Operation\\ This~Pin~is~Open~Collector~Compatible,~and~Should~Be~Pulled~up~to\\ Host~Vcc~with~A~10k\Omega~Resistor.$			
3	TX Disable	Transmitter Disable In (LVTTL)	Logic"1"Input (or No Connection) = Laser off Logic"0" Input = Laser on This Pin is Internally Pulled Up to Vcct with A 10k Ω Resistor.			
4	SDA					
5	SCL	Module Definition Identifiers	Serial ID with SFF 8472 Diagnostics Module Definition Pins Should Be Pulled up to Host Vcc with $10k\Omega$ Resistors.			
6	MOD-ABS					
7	RS0	Receiver Rate Select (LVTTL) Transmitter Rate Select (LVTTL)	NA			
9	RS1		NA			
8	LOS	Loss of Signal Out (OC)	This Pin is Open Collector Compatible, and Should Be Pulled Up to Host Vcc with A $10k\Omega$ Resistor.			
10,11,14	VeeR	Receiver Signal Ground	These Pins Should Be Connected to Signal Ground on the Host Board.			
12	RD-	Receiver Negative DATA Out (CML)	Light on = Logic "0" Output Receiver DATA Output is Internally AC Coupled And series terminated with a5 0Ω resistor.			
13	RD+	Receiver Positive DATA Out (CML)	$\label{eq:Lighton} \mbox{Light on = Logic "1" Output Receiver Data} \\ \mbox{Output is Internally Ac Coupled and Series Terminated with A 50Ω} \\ \mbox{Resistor.}$			
15	VccR	Receiver Power Supply	This Pin Should Be Connected to a Filtered +3.3V Power Supply on the Host Board.see Figure 3. Recommended Power Supply Filter			


Pin Number	Symbol	Name	Description
16	VccT	Transmitter Power Supply	This Pin Should Be Connected to a Filtered +3.3V Power Supply on the Host Board. See Figure3. Recommended Power Supply Filter
18	TD+	Transmitter Positive DATA In (CML)	Logic"1"Input=Light On Transmitter Data Inputs are Internally AC Coupled and Terminated with a Differential 100Ω Resistor.
19	TD-	Transmitter Negative DATA In (CML)	Logic"0"Input=Light on Transmitter Data Inputs Are Internally AC Coupled and Terminated with a Differential 100Ω Resistor.

VII. Regulatory Compliance


Feature	Test Method	Performance
Electrostatic Discharge (ESD) to the Electrical Pins	MIL-STD-883C Method 3015.7	Class1 (>1500 Volts)
Electrostatic Discharge (ESD) Immunity	Variation of IEC 61000-4-2	LV 4 (Air discharge: 15 KV; Contact discharge : 8 KV)
Electromagnetic Interference (EMI)	CISPR22 ITE Class B EN55022 Class B FCC Class B	Compliant with Standards
Immunity	IEC61000-4-3 Class 2 EN55024	Typically show no measurable effect from a 3V/m field swept from 80 to 1000MHz applied to the transceiver without a chassis enclosure.


VIII. Principle diagram

IX. Typical Application Circuit

X. Package Outline

Unit: mm

Unspecified Tolerance: ±0.2mm

Test Center

I. Compatibility Testing

Each fiber optical transceiver has been tested in host device on site in FS Assured Program to ensure full compatibility with over 200 vendors.

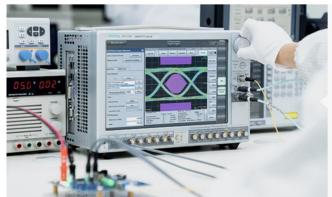
Cisco Catalyst C9500-24Y4C

Cisco MS425-16

Brocade VDX 6940-144S

Dell EMC Networking Z9100-ON

Force@tm S60-44T


HUAWEI S6720-30L-HI-24S

Above is part of our test bed network equipment. For more information, please click the Test Bed PDF. It will be updated in real time as we expand our portfolio.

II. Performance Testing

Each fiber optical transceiver has been fully tested in FS Assured Program equipped with world's most advanced analytical equipment to ensure that our transceivers work perfectly on your device.

1. TX/RX Signal Quality Testing

Equipped with the all-in-one tester integrated 4ch BERT & sampling oscilloscope, and variable optical attenuator to ensure the input and output signal quality.

- Eye Pattern Measurements: Jitter, Mask Margin, etc
- Average Output Power
- OMA
- Extinction Ratio
- · Receiver Sensitivity
- BER Curve

2. Reliability and Stability Testing

Subject the transceivers to dramatic changes in temperature on the thermal shock chamber to ensure reliability and stability of the transceivers.

- Commercial: 0 °C to 70 °C
- Extended: -5 °C to 85 °C
- Industrial: -40 °C to 85 °C

3. Transfer Rate and Protocol Testing

Test the actual transfer data rate and the transmission ability under different protocols with Network Master Pro.

- Etherne
- Fibre Channel
- SDH/SONET
- CPRI

4. Optical Spectrum Evaluation

 $\label{thm:potential} Evaluate various important parameters with the Optical Spectrum Analyzer to meet the industry standards.$

- Center Wavelength, Level
- OSNR
- SMSF
- Spectrum Width

Order Information

Part Number	Description
SFP56-SR-50G	SFP56 50GBASE-SR 850nm 100m Transceiver
QSFP28-50G-BX	QSFP28 50GBASE-BX 1271nmTX/1331nmRX 10km Transceiver
QSFP28-50G-BX	QSFP28 50GBASE-BX 1331nmTX/1271nmRX 10km Transceiver
QSFP28-50G-BX40	QSFP28 50GBASE-BX40 1295nmTX/1309nmRX 40km Transceiver
QSFP28-50G-BX40	QSFP28 50GBASE-BX40 1309nmTX/1295nmRX 40km Transceiver

The information in this document is subject to change without notice. FS has made all efforts to ensure the accuracy of the information, but all information in this document does not constitute any kind of warranty.