
# 25G SFP28 850nm 300m DOM Transceiver

SFP28-25GESR-85



## Application

- Data Center Interconnect
- 25G BASE-ESR Ethernet

#### Features

- Supports 25.78Gb/s Bit Rate
- Hot-pluggable SFP28 Footprint
- 850nm VCSEL Laser and PIN Photo-detector
- Internal CDR on Transmitter and Receiver Channel
- Link Lengths at 25.78G 400m over OM4 MMF
- Link Lengths at 25.78G 300m over OM3 MMF
- LC Duplex Connector
- Low Power Consumption < 1W</li>
- RoHS-10 Compliant (lead-free)
- 0°C to 70°C Operating Temperature Range
- Single +3.3V  $\pm$  5% Power Supply
- Programmable TX Input Equalizer
- Programmable RX

#### Description

The 25G ESR 300M short-wavelength transceiver is designed for using in 25.78Gb/s data rate over multimode fiber. The transceiver is compliant with SFF-8431, and the mechanical SFP28 plug is compatible with SFF-8432. Digital diagnostics functions are available via a 2-wire serial interface, as specified in SFF-8472.

#### **Product Specifications**

#### I. Absolute Maximum Ratings

| Parameter                 | Symbol          | Min. | Max. | Unit |
|---------------------------|-----------------|------|------|------|
| Storage Temperature Range | Ts              | -40  | 85   | S    |
| Relative Humidity         | RH              | 0    | 85   | %    |
| Supply Voltage            | V <sub>cc</sub> | -0.3 | 4.0  | V    |

#### **II. Recommended Operating Conditions**

| Parameter                  | Symbol           | Min. | Тур.  | Max.                | Unit |
|----------------------------|------------------|------|-------|---------------------|------|
| Operating Case Temperature | T <sub>OPR</sub> | 0    |       | 70                  | ٦°   |
| Power Supply Voltage       | V <sub>cc</sub>  | 3.14 | 3.3   | 3.46                | V    |
| Bit Rate                   | BR               |      | 25.78 |                     | Gb/s |
| Bit Error Ratio            | BER              |      |       | 5*10 <sup>E-5</sup> |      |
| Max Supported Link Length  | L                |      |       | 300@OM3<br>400@OM4  | m    |

# III. Electrical Characteristics

| Parameter                        | Symbol             | Unit      | Min.            | Тур. | Max.                 | Note |
|----------------------------------|--------------------|-----------|-----------------|------|----------------------|------|
| Supply Voltage                   | V <sub>cc</sub>    | V         | 3.14            | 3.3  | 3.46                 |      |
| Supply Current                   | lcc                | mA        |                 |      | 230                  |      |
|                                  | Tra                | ansmitter |                 |      |                      |      |
| Input Differential Impedance     | R <sub>IN</sub>    | Ω         | 80              | 100  | 120                  | 1    |
| Single Ended Data Input Swing    | V <sub>IN</sub>    | mVp-p     | 90              |      | 500                  |      |
| Transmit Disable Voltage         | V <sub>DIS</sub>   | V         | 2               |      | V <sub>CCHOST</sub>  |      |
| Transmit Enable Voltage          | $V_{\text{EN}}$    | V         | $V_{\text{EE}}$ |      | V <sub>EE</sub> +0.8 |      |
| Transmit Fault Assert Voltage    | $V_{FA}$           | V         | 2               |      | V <sub>CCHOST</sub>  |      |
| Transmit Fault De-Assert Voltage | V <sub>FDA</sub>   | V         | $V_{\text{EE}}$ |      | V <sub>EE</sub> +0.8 |      |
| Receiver                         |                    |           |                 |      |                      |      |
| Single Ended Data Output Swing   | V <sub>OD</sub>    | mVp-p     | 200             |      | 500                  |      |
| LOS Fault                        | V <sub>LOSFT</sub> | V         | 2               |      | V <sub>CCHOST</sub>  |      |

 $V_{\text{LOSNR}}$ 

V

 $\mathsf{V}_{\mathsf{EE}}$ 

 $V_{EE}$ +0.8

Note: 1. Differential between TD+ / TD-

LOS Normal

# **IV. Optical Characteristics**

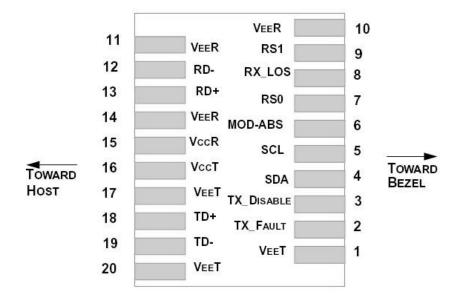
| Parameter                                  | Symbol             | Unit | Min.  | Тур. | Max. | Note |  |
|--------------------------------------------|--------------------|------|-------|------|------|------|--|
|                                            | Transmitter        |      |       |      |      |      |  |
| Nominal Wavelength                         | λ                  | nm   | 840   |      | 860  |      |  |
| Spectral Width                             | DI                 | nm   |       |      | 0.5  |      |  |
| Optical Modulation Amplitude               | P <sub>OMA</sub>   | dBm  | -4.3  |      | 3    |      |  |
| <b>Optical Output Power</b>                | Pav                | dBm  | -6.4  |      | 2.4  |      |  |
| Extinction Ratio                           | ER                 | dB   | 2     |      |      |      |  |
| Transmitterand Dispersion Penalty          | TDP                | dB   |       |      | 5    |      |  |
| Average Launch Power of OFF<br>Transmitter | P <sub>OFF</sub>   | dBm  |       |      | -30  |      |  |
| Receiver                                   |                    |      |       |      |      |      |  |
| Center Wavelength                          | λ                  | nm   | 840   |      | 860  |      |  |
| Average Receiver Power                     | PAVG               | dBm  | -10.3 |      | 2.4  | 1    |  |
| Stressed Receiver Sensitivity (OMA)        | R <sub>SENSE</sub> | dBm  |       |      | -5.2 | 2    |  |
| Receiver Reflectance                       | R <sub>REFL</sub>  | dB   |       |      | -12  |      |  |
| Assert LOS                                 | LOS <sub>A</sub>   | dBm  | -30   |      |      |      |  |
| De-Assert LOS                              | LOS <sub>D</sub>   | dBm  |       |      | -13  |      |  |
| LOS Hysteresis                             |                    | dB   | 0.5   |      |      |      |  |

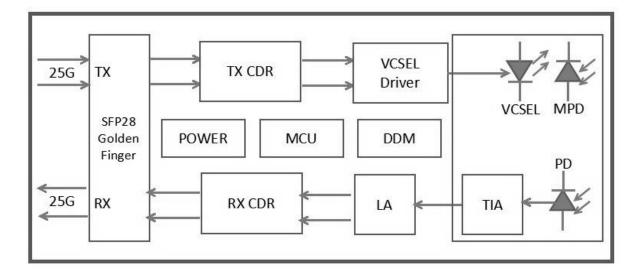
Notes:

1. Sensitivity for 25.78G PRBS 231-1 and BER better than or equal to  $5*10^{E-5}$ .

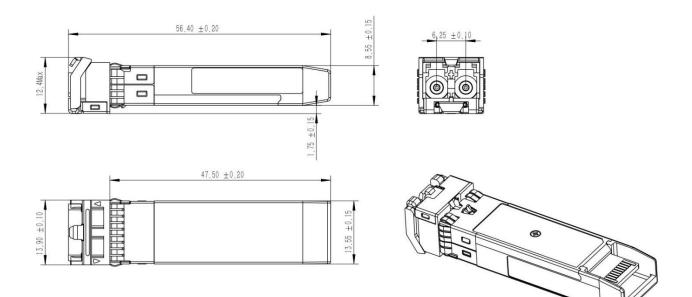
2. The stressed sensitivity value in the table is for system level BER measurements which include the effects of CDR circuit.

#### **IV. Pin Function Definitions**





Figure 1. Pin Definitions of the Module High Speed Inputs/Outputs

## **V. Transceiver Pin Descriptions**


| Pin No. | Symbol     | Name                           | Definition                                                                                                                                                                             |
|---------|------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1,17,20 | VeeT       | Transmitter Signal Ground      | Thesepins should be connected to signal ground on the host board.                                                                                                                      |
| 2       | TX Fault   | Transmitter Fault Out (OC)     | Logic "1" Output = Transmitter Fault<br>Logic"0"Output= Normal Operation<br>This pin is open collector compatible, and should be pulled<br>up to Host Vcc with a $10k\Omega$ resistor. |
| 3       | TX Disable | Transmitter Disable In (LVTTL) | Logic"1"Input(or no connection)=Laser off<br>Logic"0"Input=Laser on This pin is internally pulled up to<br>VccT with a 10kΩ resistor.                                                  |
| 4       | SDA        |                                |                                                                                                                                                                                        |
| 5       | SCL        | Module Definition Identifiers  | SerialID with SFF8472 Diagnostics Module Definition pins should be pulled up to Host Vcc with $10k\Omega$ resistors.                                                                   |
| 6       | MOD-ABS    |                                |                                                                                                                                                                                        |

| Pin No.  | Symbol | Name                               | Definition                                                                                                                            |
|----------|--------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| 7        | RS0    | Receiver Rate Select (LVTTL)       |                                                                                                                                       |
| 9        | RS1    | Transmitter Rate Select (LVTTL)    | NA                                                                                                                                    |
| 8        | LOS    | Loss of Signal Out (OC)            | Thispin is open collector compatible, and should be pulled up to Host Vcc with a $10k\Omega$ resistor.                                |
| 10,11,14 | VeeR   | Receiver Signal Ground             | These pins should be connected to signal ground on the host board.                                                                    |
| 12       | RD-    | Receiver Negative DATA Out (CML)   | Light on = Logic "0" Output Receiver DATA output is internally AC coupled and series terminated with a $50\Omega$ resistor.           |
| 13       | RD+    | Receiver Positive DATA Out (CML)   | Light on = Logic "1" Output Receiver DATA output is internally AC coupled and series terminated with a $50\Omega$ resistor.           |
| 15       | VccR   | Receiver Power Supply              | This pin should be connected to a filtered +3.3V power<br>supply on the host board.<br>See Figure3. Recommended power supply filter   |
| 16       | VccT   | Transmitter Power Supply           | This pin should be connected to a filtered +3.3V power<br>supply on the host board.<br>See Figure3. Recommended power supply filter   |
| 18       | TD+    | Transmitter Positive DATA In (CML) | Logic "1" Input = Light on Transmitter DATA inputs are internally AC coupled and terminated with a differential $100\Omega$ resistor. |
| 19       | TD-    | Transmitter Negative DATA In(CML)  | Logic"0"Input = Light on Transmitter DATA inputs are internally AC coupled and terminated with a differential $100\Omega$ resistor.   |

## VI. Block Diagram



## VII. Diagram Mechanial Drawing



## **Test Center**

# I. Compatibility Testing

Each fiber optical transceiver has been tested in host device on site in FS Assured Program to ensure full compatibility with over 200 vendors.



Cisco Catalyst C9500-24Y4C



Cisco MS425-16



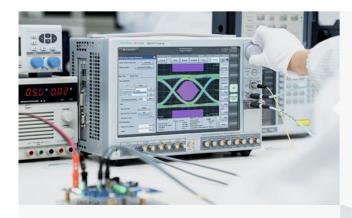
Brocade VDX 6940-144S



Dell EMC Networking Z9100-ON



Force<sup>®</sup>tm S60-44T




HUAWEI S6720-30L-HI-24S

Above is part of our test bed network equipment. For more information, please click the Test Bed PDF. It will be updated in real time as we expand our portfolio.

#### **II. Performance Testing**

Each fiber optical transceiver has been fully tested in FS Assured Program equipped with world's most advanced analytical equipment to ensure that our transceivers work perfectly on your device.



#### 1. TX/RX Signal Quality Testing

Equipped with the all-in-one tester integrated 4ch BERT & sampling oscilloscope, and variable optical attenuator to ensure the input and output signal quality.

- Eye Pattern Measurements: Jitter, Mask Margin, etc
- Average Output Power
- OMA
- Extinction Ratio
- Receiver Sensitivity
- BER Curve

#### 2. Reliability and Stability Testing

Subject the transceivers to dramatic changes in temperature on the thermal shock chamber to ensure reliability and stability of the transceivers.

- Commercial: 0 °C to 70 °C
- Extended: -5 °C to 85 °C
- Industrial: -40 °C to 85 °C





#### 3. Transfer Rate and Protocol Testing

Test the actual transfer data rate and the transmission ability under different protocols with Network Master Pro.

- Ethernet
- Fibre Channel
- SDH/SONET
- CPRI

#### 4. Optical Spectrum Evaluation

Evaluate various important parameters with the Optical Spectrum Analyzer to meet the industry standards.

- Center Wavelength, Level
- OSNR
- SMSR
- Spectrum Width



## **Order Information**

| Part Number      | Description                                      |
|------------------|--------------------------------------------------|
| SFP28-25GSR-85   | 25G SFP28 850nm 100m DOM Transceiver             |
| SFP-10/25GSR-85  | 10/25G SFP28 850nm 100m DOM Transceiver          |
| SFP28-25GESR-85  | 25G SFP28 850nm 300m DOM Transceiver             |
| SFP28-25GLR-31   | 25G SFP28 1310nm 10km DOM Transceiver            |
| SFP28-25GER-31   | 25G SFP28 1310nm 30km DOM Transceiver            |
| SFP28-25GER-31   | 25G SFP28 1310nm 40km DOM Transceiver            |
| SFP28-25GSR-85-I | 25G SFP28 850nm 100m Industrial DOM Transceiver  |
| SFP28-25GLR-31-I | 25G SFP28 1310nm 10km Industrial DOM Transceiver |
| SFP28-25GER-31-I | 25G SFP28 1310nm 30km Industrial DOM Transceiver |
| SFP28-25GER-31-I | 25G SFP28 1310nm 40km Industrial DOM Transceiver |

#### Note:

25G SFP28 transceiver module is individually tested on corresponding equipment such as Cisco, Arista, Juniper, Dell, Brocade and other brands, and passes the monitoring of FS.COM intelligent quality control system.



公





The information in this document is subject to change without notice. FS has made all efforts to ensure the accuracy of the information, but all information in this document does not constitute any kind of warranty.

Copyright © 2009-2022 FS.COM All Rights Reserved.