Corning[®] LEAF[®] Optical Fiber **Product Information**

CORNING

In the race to satisfy the global demand for bandwidth, Corning® LEAF® optical fiber is the clear winner as the world's most widely deployed non-zero dispersion shifted fiber (NZ-DSF). Optimized for long-haul and metro networks, LEAF fiber is a technically advanced product that provides high capacity, broad system flexibility, and superior performance. Additionally, LEAF fiber is the industry leader in polarization mode dispersion (PMD) specifications and has the lowest attenuation of any NZ-DSF on the market today, enabling networks to evolve from the current 10G to the 40G and 100G systems of the future.

Optical Specifications

Maximum Attenuation

Wavelength (nm)	Maximum Value (dB/km)
1383±3*	≤ 0.4
1410	≤ 0.32
1450	≤ 0.26
1550	≤ 0.19
1625	≤ 0.21

*Attenuation values at this wavelength represent post hydrogen aging performance.

Attenuation vs. Wavelength

Range	Ref. λ	Max. α Difference
(nm)	(nm)	(dB/km)
1525 – 1575	1550	0.02
1625	1550	0.03

The attenuation in a given wavelength range does not exceed the attenuation of the reference wavelength (λ) by more than the value α .

Macrobend Loss

Contact your sales	Mandrel	Number	Wavelength	Induced
representative, or call	Diameter	of	(nm)	Attenuation*
the Optical Fiber Customer	(mm)	Turns	()	(dB)
Service Department:	32	1	1550 & 1625	≤ 0.50
+44-1244-525-320 (Europe)	60	100	1550 & 1625	≤ 0.05

*The induced attenuation due to fiber wrapped around a mandrel of a specified diameter.

Point Discontinuity

Wavelength	Point Discontinuity
(nm)	(dB)
1550	≤ 0.05

Mode-Field Diameter Wavelength MFD (nm) (µm) 1550 9.6 ± 0.4 Dispersion Wavelength **Dispersion Value** (nm) [ps/(nm·km)] 1530 2.0-5.5 1565 4.5-6.0 1625 5.8-11.2

Polarization Mode Dispersion (PMD)

	Value (ps/√km)
PMD Link Design Value	≤ 0.04*
Maximum Individual Fiber PMD) ≤ 0.1
*Complies with IEC 60794-3: 2001, Section 5.5,	

Method 1, (m = 20, Q = 0.01%), September 2001.

The PMD link design value is a term used to describe the PMD of concatenated lengths of fiber. This value represents a statistical upper limit for total link PMD. Individual PMD values may change when cabled. Corning's fiber specification supports emerging network design requirements for highdata-rate systems operating at 10 Gb/s rates and higher.

Standards Compliance

- ITU-T G.655 (Tables A, B, C, D)
- IEC Specifications 60793-2-50 Type B4
- TIA/EIA 492-EA00
- Telcordia's GR-20

How to Order

Contact your sales

Email: cofic@corning.com

and quantity when ordering.

Please specify the fiber type, attenuation,

Dimensional Specifications

Glass Geometry

Fiber Curl	\geq 4.0 m radius of curvature
Cladding Diameter	125.0 ± 0.7 μm
Core-Clad Concentricity	≤ 0.5 µm
Cladding Non-Circularity	≤ 0.7%

Coating Geometry

Coating Diameter	242 ± 5 µм
Coating-Cladding Concentricity	<12 µм

Environmental Specifications

Environmental Test	Test Condition	Induced Attenuation 1550 nm and 1625 nm (dB/km)
Temperature Dependence	-60°С то +85°С*	≤ 0.05
Temperature Humidity Cycling	-10°С то +85°С* up то 98% RH	≤ 0.05
Water Immersion	23°± 2°C	≤ 0.05
Heat Aging	85°± 2°C*	≤ 0.05
Damp Heat	85°C at 85% RH	≤ 0.05

*Reference temperature = +23°C

Operating Temperature Range: -60°C to +85°C

Mechanical Specifications

Proof Test

The entire fiber length is subjected to a tensile stress ≥100 kpsi (0.7 GPa)*. *Higher proof test levels available

Length

Fiber lengths available up to 25.2 km/spool.

Performance Characterizations

Characterized parameters are typical values.

Numerical Aperture	0.14 NA is measured at the one percent power level of a one- dimensional far-field scan at 1550 nm.
Effective Area (A _{eff})	1550 nm: 72 μm²
Effective Group Index of Refraction (N _{eff})	1550 nm: 1.468 1625 nm: 1.469
Fatigue Resistance Parameter (Nd)	20
Coating Strip Force	Dry: 0.6 lbs. (3N) Wet, 14-day room temperature: 0.6 lbs. (3N)
Rayleigh Backscatter Coefficient (for 1 ns Pulse Width)	1550 nm: -81 dB 1625 nm: -82 dB

Chromatic Dispersion

1625 nm at 10 ps/(nm•km)

1550 nm at 4 ps/(nm•km)

Spectral Attenuation (Typical Fiber)

CORNING CC

Corning, Incorport One Riverfront Plaza Corning, NY 14831 U.S.A. Ph: 607-248-2000 (U.S. and Canada) +44-1244-525-320 (Europe) Email: cofic@corning.com www.corning.com/opticalfiber

Corning Incorporated

Formulas

Dispersion

Cladding Non-Circularity

 $\frac{\text{Cladding}}{\text{Non-Circularity}} = \left[1 - \frac{\text{Min. Cladding Diameter}}{\text{Max. Cladding Diameter}}\right] \ge 100$

Corning and LEAF are registered trademarks of Corning Incorporated, Corning, NY.

© 2014 Corning Incorporated