# 16G Fiber Channel SFP+ 850nm 100m DOM Transceiver Module

SFP-16GSR-85



## Application

• 4.25/8.5/14.025G Fibre channel

## Features

- Supports up to 14.025Gbps bit rates
- Hot-pluggable SFP+ footprint
- 850nm VCSEL laser and PIN photodiode, Up to 100m for OM3-MMF transmission
- Single +3.3V power supply
- Real Time Digital Diagnostic Monitoring
- Operating case temperature: Standard: 0 to +70° C
- Compliant with SFP+ MSA and SFF-8472 with duplex LC receptacle
- Compatible with RoHS

## Description

The SFP+ transceivers are high performance, cost effective modules supporting data rate of 14.025 Gbps.

| Fiber type | Data rate (Gbps) | Operating range (meters) |
|------------|------------------|--------------------------|
|            | 4.25             | 0.5~150                  |
| OM2        | 8.5              | 0.5~50                   |
|            | 14.025           | 0.5~35                   |
|            | 4.25             | 0.5~380                  |
| ОМЗ        | 8.5              | 0.5~150                  |
|            | 14.025           | 0.5~100                  |

The transceiver consists of three sections: a VCSEL laser transmitter, a PIN photodiode integrated with a trans-impedance preamplifier (TIA) and MCU control unit. All modules satisfy class I laser safety requirements.

The transceivers are compatible with SFP Multi-Source Agreement and SFF-8472 digital diagnostics functions.

## **Product Specifications**

## I. Absolute Maximum Ratings

| Parameter           | Symbol | Min   | Тур. | Мах | Unit | Ref. |
|---------------------|--------|-------|------|-----|------|------|
| Supply Voltage      | Vcc    | -0 .5 |      | 4.5 | V    |      |
| Storage Temperature | Ts     | -40   |      | +85 | C°   |      |
| Operating Humidity  |        | 5     |      | 85  | %    |      |

## **II. Recommended Operating Environment**

| Parameter                  | Symbol | Min   | Тур. | Мах   | Unit | Ref. |
|----------------------------|--------|-------|------|-------|------|------|
| Operating Case Temperature | Тс     | 0     |      | +70   | S°   |      |
| Power Supply Voltage       | Vcc    | 3.135 | 3.30 | 3.465 | V    |      |



| Power Supply Current | lcc |        | 300 | mA   |  |
|----------------------|-----|--------|-----|------|--|
| Data Rate            |     | 14.025 |     | Gbps |  |

# III. Optical and Electrical Characteristics

| Paran           | Parameter                     |                  | Min    | Тур. | Max   | Unit | Ref. |
|-----------------|-------------------------------|------------------|--------|------|-------|------|------|
|                 |                               | Transn           | nitter |      |       |      |      |
| Centre Wa       | velength                      | λς               | 840    | 850  | 860   | nm   |      |
| Spectral Wid    | th (RMS)                      | Δλ               |        |      | 0.59  | nm   |      |
| Side-Mode Sup   | pression Ratio                | SMSR             |        |      |       | dB   |      |
| Average Out     | tput Power                    | P <sub>out</sub> | -7.8   |      | -0.5  | dBm  | 1    |
| Extinctio       | on Ratio                      | ER               | 3.0    |      |       | dB   |      |
| Data Input Swir | Data Input Swing Differential |                  | 180    |      | 950   | mV   | 2    |
| Input Different | Input Differential Impedance  |                  | 90     | 100  | 110   | Ω    |      |
| TX Disable      | Disable                       |                  | 2.0    |      | Vcc   | V    |      |
|                 | Enable                        |                  | 0      |      | 0.8   | V    |      |
| TX Fault        | Fault                         |                  | 2.0    |      | Vcc   | V    |      |
|                 | Normal                        |                  | 0      |      | 0.8   | V    |      |
|                 |                               | Recei            | iver   |      |       |      |      |
| Centre Wa       | velength                      | λς               | 840    | 850  | 860   | nm   |      |
| Receiver S      | ensitivity                    |                  |        |      | -10.5 | dBm  | 3    |
| Receiver (      | Dverload                      |                  | 0      |      |       | dBm  | 3    |
| LOS De-         | Assert                        | LOS <sub>D</sub> |        |      | -12   | dBm  |      |

| LOS Assert                     | LOS <sub>A</sub> | -22 |     |     | dBm |   |
|--------------------------------|------------------|-----|-----|-----|-----|---|
| LOS Hysteresis                 |                  | 0.5 |     | 4   | dB  |   |
| Data Output Swing Differential | V <sub>out</sub> | 500 | 700 | 900 | mV  | 4 |
| Los                            | High             | 2.0 |     | Vcc | V   |   |
| LOS                            | Low              |     |     | 0.8 | V   |   |

#### Notes:

1. The optical power is launched into MMF.

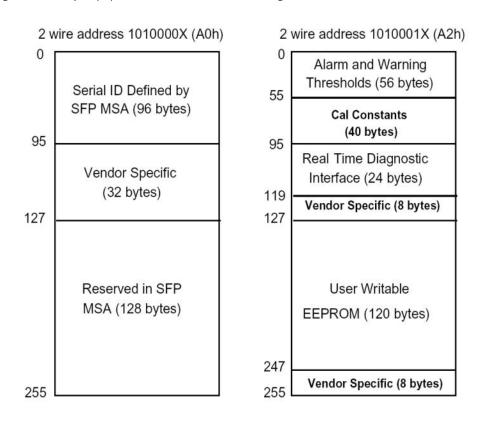
2.PECL input, internally AC-coupled and terminated.

3. Measured with a PRBS 2<sup>31</sup>-1 test pattern @14025Mbps, BER  $\leq 1 \times 10^{-12}$ .

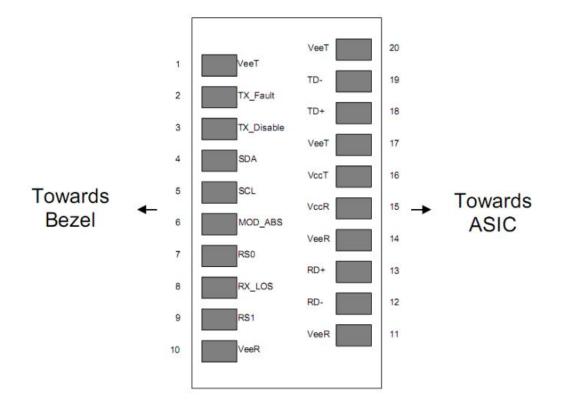
4. Internally AC-coupled.

## **III. Timing and Electrical**

| Parameter                                          | Symbol         | Min | Тур. | Max | Unit | Ref. |
|----------------------------------------------------|----------------|-----|------|-----|------|------|
| Tx Disable Negate Time                             | t_on           |     |      | 1   | ms   |      |
| Tx Disable Assert Time                             | t_off          |     |      | 10  | μs   |      |
| Time To Initialize, including Reset of<br>Tx Fault | t_init         |     |      | 300 | ms   |      |
| Tx Fault Assert Time                               | t_fault        |     |      | 100 | μs   |      |
| Tx Disable To Reset                                | t_reset        | 10  |      |     | μs   |      |
| LOS Assert Time                                    | t_loss_on      |     |      | 100 | μs   |      |
| LOS De-assert Time                                 | t_loss_off     |     |      | 100 | μs   |      |
| Serial ID Clock Rate                               | f_serial_clock |     | 100  | 400 | KHz  |      |
| MOD_DEF (0:2)-High                                 | V <sub>H</sub> | 2   |      | Vcc | V    |      |
| MOD_DEF (0:2)-Low                                  | VL             |     |      | 0.8 | V    |      |


## IV. Digital Diagnostic Monitoring Information

| Parameter           | Range        | Unit | Accuracy | Calibration |
|---------------------|--------------|------|----------|-------------|
| Temperature         | 0 to +70     | ° C  | ± 3°C    | Internal    |
| Voltage             | 3.0 to 3.6   | V    | ± 3%     | Internal    |
| <b>Bias Current</b> | 0 to 15      | mA   | ±10%     | Internal    |
| TX Power            | -7.8 to -0.5 | dBm  | ±3dB     | Internal    |
| <b>RX Power</b>     | -16 to -1    | dBm  | ±3dB     | Internal    |


## V. Digital Diagnostic Memory Map

The transceivers provide serial ID memory contents and diagnostic information about the present operating conditions by the 2-wire serial interface (SCL, SDA).

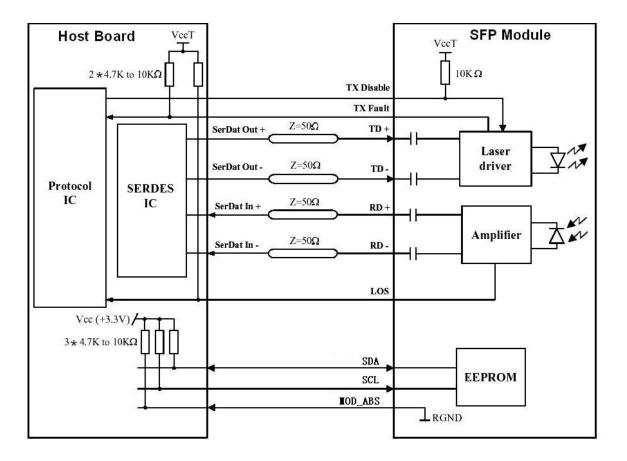
The diagnostic information with internal calibration or external calibration all are implemented, including received power monitoring, transmitted power monitoring, bias current monitoring, supply voltage monitoring and temperature monitoring. The digital diagnostic memory map specific data field defines as following.



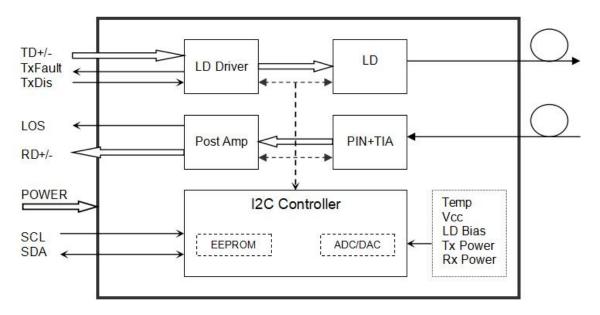
## VI. Pin Assignment



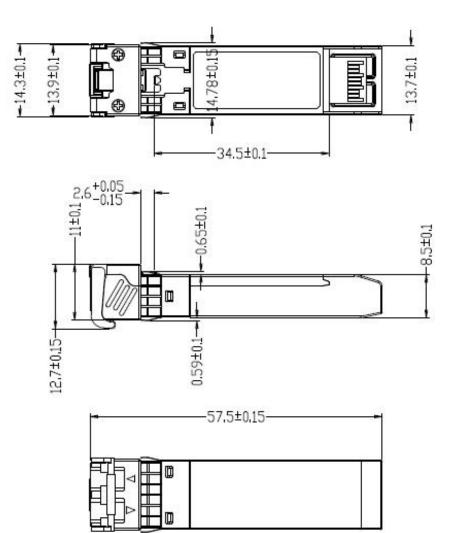
| Pin | Logic            | Description                               | Plug Seq. | Notes |
|-----|------------------|-------------------------------------------|-----------|-------|
| 1   | V <sub>EET</sub> | Transmitter Ground                        | 1         |       |
| 2   | TX FAULT         | Transmitter Fault Indication              | 3         | 1     |
| 3   | TX DISABLE       | Transmitter Disable                       | 3         | 2     |
| 4   | SDA              | SDA Serial Data Signal                    | 3         |       |
| 5   | SCL              | SCL Serial Clock Signal                   | 3         |       |
| 6   | MOD_ABS          | Module Absent. Grounded within the module | 3         |       |
| 7   | RSO              | Not Connected                             | 3         |       |
| 8   | LOS              | Loss of Signal                            | 3         | 3     |
| 9   | RS1              | Not Connected                             | 3         |       |
| 10  | V <sub>EER</sub> | Receiver ground                           | 1         |       |
| 11  | V <sub>EER</sub> | Receiver ground                           | 1         |       |
| 12  | RD-              | Inv. Received Data Out                    | 3         | 4     |


| 13 | RD+              | Received Data Out        | 3 | 4 |
|----|------------------|--------------------------|---|---|
| 14 | V <sub>EER</sub> | Receiver ground          | 1 |   |
| 15 | V <sub>CCR</sub> | Receiver Power Supply    | 2 |   |
| 16 | V <sub>CCT</sub> | Transmitter Power Supply | 2 |   |
| 17 | $V_{\text{EET}}$ | Transmitter Ground       | 1 |   |
| 18 | TD+              | Transmit Data In         | 3 | 5 |
| 19 | TD-              | Inv. Transmit Data In    | 3 | 5 |
| 20 | V <sub>EET</sub> | Transmitter Ground       | 1 |   |

#### Notes:


Plug Seq.: Pin engagement sequence during hot plugging.

- 1.TX Fault is an open collector output, which should be pulled up with a 4.7k~10kΩ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; Logic 1 indicates a laser fault of some kind. In the low state, the output will be pulled to less than 0.8V.
- 2.Laser output disabled on TDIS >2.0V or open, enabled on TDIS <0.8V.
- 3.LOS is open collector output. Should be pulled up with 4.7k~10kΩ on host board to a voltage between 2.0V and 3.6V. Logic 0 indicates normal operation; logic 1 indicates loss of signal.
- 4.RD-/+: These are the differential receiver outputs. They are internally AC-coupled 100 differential lines which should be terminated with  $100\Omega$  (differential) at the user SERDES.
- 5.TD-/+: These are the differential transmitter inputs. They are internally AC-coupled, differential lines with 100Ω differential termination inside the module.


## VII. Optical Module Block Diagram



## VIII. Optical Module Block Diagram



# IX. Diagram Mechanical Drawing





## **Test Center**

## I. Compatibility Testing

Each fiber optical transceiver has been tested in host device on site in FS Assured Program to ensure full compatibility with over 200 vendors.



Cisco Catalyst C9500-24Y4C



Cisco MS425-16



Brocade VDX 6940-144S



Dell EMC Networking Z9100-ON



Force<sup>®</sup>tm S60-44T



HUAWEI S6720-30L-HI-24S

Above is part of our test bed network equipment. For more information, please click the <u>Test Bed PDF</u>. It will be updated in real time as we expand our portfolio.

### II. Performance Testing

Each fiber optical transceiver has been fully tested in FS Assured Program equipped with world's most advanced analytical equipment to ensure that our transceivers work perfectly on your device.



#### 1. TX/RX Single Quality Testing

Equipped with the all-in-one tester integrated 4ch BERT & sampling oscilloscope, and variable optical attenuator the input and output signal quality.

- Eye Pattern Measurements: Jitter, Mask Margin, etc
- Average Output Power
- OMA
- Extinction Ratio
- Receiver Sensitivity
- BER Curve

#### 2. Reliability and Stability Testing

Subject the transceivers to dramatic in temperature on the thermal shock chamber to ensure reliability and stability of the transceivers.

- Commercial: 0°C to 70°C
- Extended: -5°C to 85°C
- Industrial: -40°C to 85°C





#### 3. Transfer Rate and Protocol Testing

Test the actual transfer data rate and the transmission ability under different protocols with Networks Master Pro.

- Ethernet
- Fiber Channel
- SDH/SONET
- CPRI

#### 4. Optical Spectrum Evaluation

Evaluate various important parameters with the Optical Spectrum Analyzer to meet the industry standards.

- Center Wavelength, Level
- OSNR
- SMSR
- Spectrum Width



## **Order Information**

| Part Number  | Description                                               |
|--------------|-----------------------------------------------------------|
| SFP-16GSR-85 | 16G Fiber Channel SFP+ 850nm 100m DOM Transceiver Module  |
| SFP-16GLR-31 | 16G Fiber Channel SFP+ 1310nm 10km DOM Transceiver Module |
| SFP-16GER-55 | 16G Fiber Channel SFP+ 1550nm 40km DOM Transceiver Module |



ឋ





The information in this document is subject to change without notice. FS has made all efforts to ensure the accuracy of the information, but all information in this document does not constitute any kind of warranty.

Copyright © 2009-2021 FS.COM All Rights Reserved.