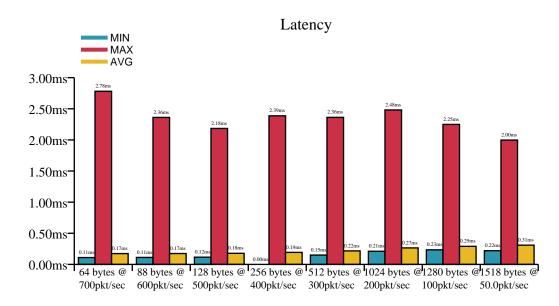


# Unicast Latency Report - UDP

#### **Device Tested**

WLAN Switch Model: WLAN Switch Version: AP Model: FS-AP733C

AP SW Version: V200R008C60B307SP05




#### Overview

The latency test measures the delay incurred by frames passing through the system under test (SUT). It also measures the amount of jitter, which is the variation in latency over many frames. Latency and jitter are key performance metrics that determine how well the SUT can handle traffic, such as voice or real-time video, that is sensitive to the delay between source and destination. This test measures latency and jitter according to RFC 2544 and RFC 3550, respectively.

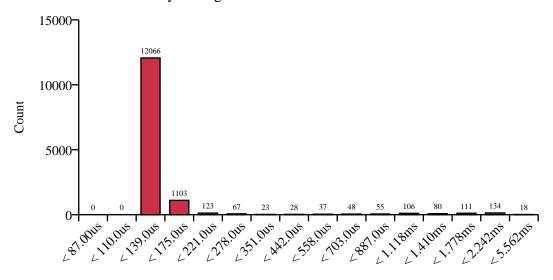
### Measured Latency

The following graph summarizes the measured minimum, maximum, and average latency performance of the SUT at the specified frame sizes, accumulated over all trials. Lower values indicate better performance. Also, a smaller difference between maximum and minimum latency indicates a better-performing SUT datapath.

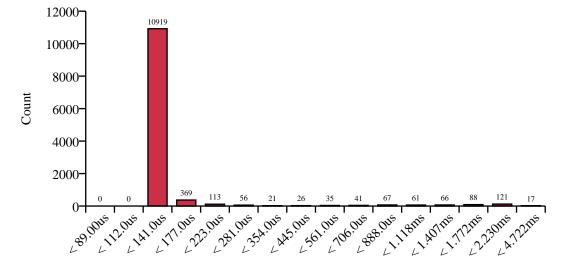


Normal values for latency range from 1 to 1000 microseconds. Values in excess of 20 milliseconds are cause for concern, as they can pose problems for VoIP traffic.

### Latency Histograms

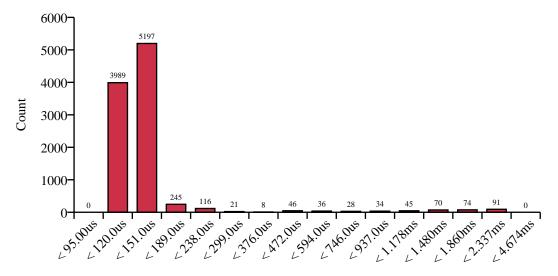

The following latency histograms show the distribution of latency values produced by the SUT. Each histogram has 16 buckets (time ranges) into which the measured latency values are placed; the bucket boundaries are determined automatically during the test. Each bucket contains the number of measured



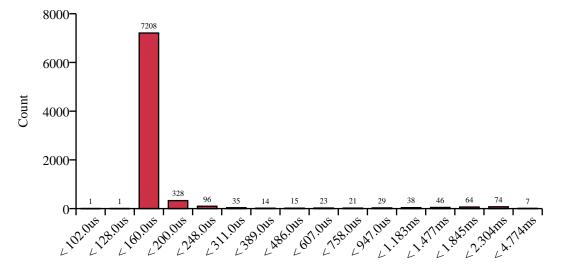

latency values that were less than the upper boundary of the bucket, and greater than the upper boundary of the preceding bucket. A separate histogram is plotted for each frame size, offered load and trial.

Ideally, all of the measured latency values should be clustered into as few buckets as possible, indicating a consistent and uniform delay through the SUT datapath.

Latency Histogram Trial:1 Size:64 Rate:700.0 frames/sec

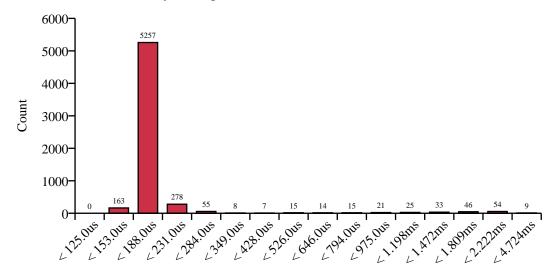



Latency Histogram Trial:1 Size:88 Rate:600.0 frames/sec

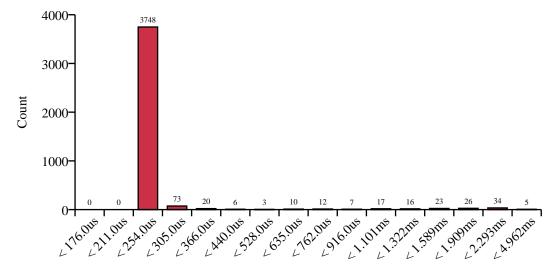





Latency Histogram Trial:1 Size:128 Rate:500.0 frames/sec

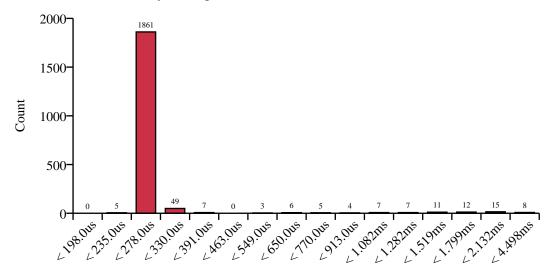



### Latency Histogram Trial:1 Size:256 Rate:400.0 frames/sec

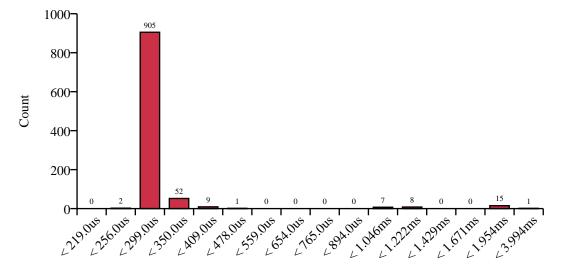





Latency Histogram Trial:1 Size:512 Rate:300.0 frames/sec




### Latency Histogram Trial:1 Size:1024 Rate:200.0 frames/sec






Latency Histogram Trial:1 Size:1280 Rate:100.0 frames/sec



### Latency Histogram Trial:1 Size:1518 Rate:50.0 frames/sec





### **Test Conditions**

| Parameter   | Value                                     | Description              |
|-------------|-------------------------------------------|--------------------------|
| Frame Sizes | [64, 88, 128, 256, 512, 1024, 1280, 1518] | Frame sizes in bytes     |
| ILOAD       | [700, 600, 500, 400, 300, 200, 100, 50]   | Traffic load, frames/sec |

# **Test Configuration**

| Parameter              | Value  | Description                                                                                                                                                                                                           |
|------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Learning Time          | 2 sec  | Transmission time (seconds) for initial learning packets, to allow the SUT to set up forwarding tables                                                                                                                |
| Transmit Time          | 20 sec | Trial duration (seconds) - i.e., duration of test traffic                                                                                                                                                             |
| Settle Time            | 2 sec  | Idle time after test traffic transmission completes                                                                                                                                                                   |
| Number of Trials       | 1      | Number of times measurements are repeated for averaging                                                                                                                                                               |
| Prefer IPv6 addressing | False  | If this flag is enabled and clients has an IPv6 address configured, then generated traffic will use IPv6 addresses. If there is no IPv6 address configured on clients then generated traffic will use IPv4 addresses. |

# **Test Topology**

The test topology is shown below. Traffic is transmitted in the direction of the arrows. The test client port identifiers and IP addresses are indicated in the boxes, together with the security mode and channel ID for WLAN clients.



A total of 2 ports were used in this test.



### **Client Configuration**

| Client Group | Rx<br>Data<br>MCS | Tx<br>Data<br>MCS | Tx<br>Mgmt.<br>PHY<br>Rate<br>(Mbps) | PHY Rate (Mbps) | IPv6     | Port                      | Adopt<br>Tx<br>Data<br>MCS |
|--------------|-------------------|-------------------|--------------------------------------|-----------------|----------|---------------------------|----------------------------|
| Group_001    | 15                | N/A               | 2.0                                  | 300.0           | Disabled | 192.168.1.111_card2_port1 | N/A                        |
| Group_002    | N/A               | N/A               | N/A                                  | 100             | Disabled | 192.168.1.111_card1_port1 | N/A                        |

### Client MAC Configuration

| Client Group | PHY<br>Type | A-MPDU | RX<br>A-MSDU | TX A-MSDU<br>(Max, Target) | LDPC | Channel<br>Bandwidth | Guard<br>Interval | Channel<br>Model | Dynamic<br>Bandwidth |
|--------------|-------------|--------|--------------|----------------------------|------|----------------------|-------------------|------------------|----------------------|
| Group_001    | 11n         | On     | On           | On (Auto)                  | Off  | 40                   | short             | Bypass           | N/A                  |

### Client MIMO Configuration

| Client Group | MIMO | MU/SU-MIMO |
|--------------|------|------------|
| Group_001    | 2x2  | N/A        |

### Client 802.11k Configuration

| Client Group | 802.11k | Measurements Enabled | Periodicity | Max. Frames |
|--------------|---------|----------------------|-------------|-------------|
| Group_001    | Off     | None                 | N/A         | N/A         |

# Methodology

The test is performed by associating test clients with the SUT ports, performing any desired learning transmissions, and then generating test traffic between the test clients. Proprietary timestamps inserted in each test traffic frame are then used to calculate the minimum, maximum and average latency as per RFC 2544, as well as the smoothed interarrival jitter according to RFC 3550. The results are recorded separately for each combination of test conditions, as well as for each trial if multiple trials are run. Results from multiple trials are averaged into the graphs shown above.

Different intended loads (ILOADs) and frame sizes can be set up, to understand how latency varies with different types of traffic in a real environment. Each combination of ILOAD and frame size is tested separately. Test traffic may be configured to flow either from Ethernet to wireless, from wireless to Ethernet, or from wireless to wireless. If multiple APs are involved in the test, the ILOAD is divided evenly across the APs; if multiple clients are associated with an AP, the ILOAD for that AP is divided evenly between the clients.

Latency measurements are made accurately even in the presence of frame loss. However, the ILOAD should be set such that no frame loss occurs; otherwise, buffer occupancy delays can obscure actual SUT datapath delays. The throughput test may be used to determine this traffic level.



# **Detailed Results**

| Frame<br>Size | Frame<br>Rate | Trial<br>Number | Minimum<br>Latency | Maximum<br>Latency | Average<br>Latency | Average<br>Jitter |
|---------------|---------------|-----------------|--------------------|--------------------|--------------------|-------------------|
| 64            | 700.0         | 1               | 110.0us            | 2.781ms            | 174.0us            | 133.1us           |
| 88            | 600.0         | 1               | 112.0us            | 2.361ms            | 175.0us            | 224.1us           |
| 128           | 500.0         | 1               | 116.0us            | 2.184ms            | 178.0us            | 237.4us           |
| 256           | 400.0         | 1               | 0.000s             | 2.387ms            | 193.0us            | 178.3us           |
| 512           | 300.0         | 1               | 150.0us            | 2.362ms            | 217.0us            | 43.16us           |
| 1024          | 200.0         | 1               | 211.0us            | 2.481ms            | 265.0us            | 40.38us           |
| 1280          | 100.0         | 1               | 234.0us            | 2.249ms            | 290.0us            | 80.10us           |
| 1518          | 50.0          | 1               | 220.0us            | 1.997ms            | 309.0us            | 60.40us           |

Detailed latency histogram tables are not included in this report, but may be obtained from the file 'Results\_unicast\_latency.csv' in the results directory.

#### **Access Point Information**

The following table shows the SUT details. The received signal strength indication (RSSI) from the SUT is sampled on each port at the start of each trial and averaged over all of the trials.

| Port Name                 | Туре    | RxAtt* | Chan | BSSID             | SSID | RSSI (dBm)<br>A,B,C,D |
|---------------------------|---------|--------|------|-------------------|------|-----------------------|
| 192.168.1.111_card2_port1 | 80211ac | off    | 1    | 02:DD:76:00:DC:83 | A1-T | -19, N/A, N/A,<br>N/A |
| 192.168.1.111_card2_port1 | 80211ac | off    | 1    | 02:DD:76:00:DC:83 | A1-T | -19, N/A, N/A,<br>N/A |
| 192.168.1.111_card2_port1 | 80211ac | off    | 1    | 02:DD:76:00:DC:83 | A1-T | -20, N/A, N/A,<br>N/A |
| 192.168.1.111_card2_port1 | 80211ac | off    | 1    | 02:DD:76:00:DC:83 | A1-T | -20, N/A, N/A,<br>N/A |
| 192.168.1.111_card2_port1 | 80211ac | off    | 1    | 02:DD:76:00:DC:83 | A1-T | -20, N/A, N/A,<br>N/A |
| 192.168.1.111_card2_port1 | 80211ac | off    | 1    | 02:DD:76:00:DC:83 | A1-T | -20, N/A, N/A,<br>N/A |
| 192.168.1.111_card2_port1 | 80211ac | off    | 1    | 02:DD:76:00:DC:83 | A1-T | -20, N/A, N/A,<br>N/A |
| 192.168.1.111_card2_port1 | 80211ac | off    | 1    | 02:DD:76:00:DC:83 | A1-T | -20, N/A, N/A,<br>N/A |
| 192.168.1.111_card2_port1 | 80211ac | off    | 1    | 02:DD:76:00:DC:83 | A1-T | -20, N/A, N/A,<br>N/A |
| 192.168.1.111_card2_port1 | 80211ac | off    | 1    | 02:DD:76:00:DC:83 | A1-T | -20, N/A, N/A,<br>N/A |
| 192.168.1.111_card2_port1 | 80211ac | off    | 1    | 02:DD:76:00:DC:83 | A1-T | -20, N/A, N/A,<br>N/A |



| Port Name                 | Туре    | RxAtt* | Chan | BSSID             | SSID | RSSI (dBm)<br>A,B,C,D |
|---------------------------|---------|--------|------|-------------------|------|-----------------------|
| 192.168.1.111_card2_port1 | 80211ac | off    | 1    | 02:DD:76:00:DC:83 | A1-T | N/A, -16, N/A,<br>N/A |
| 192.168.1.111_card2_port1 | 80211ac | off    | 1    | 02:DD:76:00:DC:83 | A1-T | -20, N/A, N/A,<br>N/A |
| 192.168.1.111_card2_port1 | 80211ac | off    | 1    | 02:DD:76:00:DC:83 | A1-T | -20, N/A, N/A,<br>N/A |
| 192.168.1.111_card2_port1 | 80211ac | off    | 1    | 02:DD:76:00:DC:83 | A1-T | -20, N/A, N/A,<br>N/A |
| 192.168.1.111_card2_port1 | 80211ac | off    | 1    | 02:DD:76:00:DC:83 | A1-T | -20, N/A, N/A,<br>N/A |

The RSSI is measured at the WaveBlade SMA connector. RSSI values should be between -25 dBm and -35 dBm for port types of 80211 and 80211n ports when the RX attenuation (RxAtt\*) option is 'off'. For 80211n port types with attenuation 'on' the RSSI values at the port should be between -5 dBm and -15 dBm. If the RSSI is not in this range, modify the external attenuation to bring it into this range.

### **Port Configuration**

The following table shows the port configuration details like Bandwidth, Channel, Band, CenterFrequency.

| PortName                  | Port<br>Type | Channel | Band       | Channel<br>Bandwidth | Center<br>Frequency |
|---------------------------|--------------|---------|------------|----------------------|---------------------|
| 192.168.1.111_card2_port1 | 80211ac      | 1       | 2.4<br>GHz | 40 MHz               | N/A MHz             |

#### Other Information

Results Directory C:\Users\Dell\VeriWave\WaveApps\Results\20201123-150913

WaveApps Version 7.6, 2019.04.02.18-ixia
WaveTest Version 7.6-124-ixi, 2019.04.02.17