

10GBASE-ZR XFP 1550nm 80km DOM Duplex LC Transceiver

Application

- 10GBASE-ZR/ZW&10G Ethernet
- 10G Fiber Channel
- · Other Optical Links

Standards

- XFP MSA Compliant
- CPRI
- eCPRI

Features

- Hot-Pluggable XFP Footprint
- Supports 9.95Gb/s to 11.3Gb/s Bit Rates
- Up to 80km on 9/125μm SMF
- Duplex LC/UPC Type
- 1550nm EML Transmitter and APD Receiver
- Low Power Consumption < 3.5W
- Single 3.3V Power Supply
- Support Digital Diagnostic Monitoring Interface
- No Reference Clock Required
- Operating Case Temperature Range: $0 \sim 70^{\circ}$ C
- Metal Enclosure, for Lower EMI
- Meet ESD Requirements, Resist 8KV Direct Contact Voltage

Description

The 10G XFP Optical Transceiver Module supports up to 80km link lengths over SMF via an LC duplex connector. The transceiver is compliant with CPRI, eCPRI. Digital diagnostics functions are available via a 2-wire serial interface, as specified in the XFP MSA. With these features, this 10G SFP+ transceiver is ideal for data centers, 10G fibre channel, legacy FDDI multimode links, etc.

Product Specifications

I. Absolute Maximum Ratings

It has to be noted that the operation in excess of any individual absolute maximum ratings might cause permanent damage to this module.

Parameter	Symbol	Min.	Max.	Unit
Storage Temperature	T _s	-40	85	°C
Maximum Supply Voltage1	V_{CC3}	-0.5	4.0	V
Maximum Supply Voltage 2	V_{CC5}	-0.5	6.0	V
Relative Humidity (Non-condensation)	RH	5	95	%
Damage Threshold	TH_d	0		dBm

II. Recommended Operating Conditions

Parameter	Symbol	Min.	Typical	Max.	Unit	Notes
Operating Case Temperature	T_OP	0		70	°C	
Power Supply Voltage	V_{CC}	3.135	3.3	3.465	V	
Data Rate			10.3125		Gb/s	
Control Input Voltage High		2		V_{CC}	V	
Control Input Voltage Low		0		0.8	V	
Link Distance (SMF)	D			80	km	9/125um

III. Optical Characteristics

The following optical characteristics are defined over the recommended operating environment unless otherwise specified.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Transmitter						
Center Wavelength	λ_{C}	1530	1550	1570	nm	1
Optical Spectral Width	Δλ			1	nm	
Side Mode Suppression Ratio	SMSR	30			dB	
Average Optical Power	P_{AVG}	0		5	dBm	
Optical Extinction Ratio	ER	8.2			dB	
Transmitter and Dispersion Penalty	TDP			3.0	dB	
Average Launch Power of OFF Transmitter	P_{OFF}			-30	dBm	
Transmitter Eye Mask		Compli	ant with IEEE8	302.3ae		
	Receiv	ver .				
Center Wavelength	λ_{C}	1270		1610	nm	
Receiver Sensitivity (Average Power)	Sen			-24	dBm	2
Input Saturation Power (Overload)	Psat	-8			dBm	
LOS Assert	LOS _A	-37			dBm	
LOS De-assert	LOS _D			-27	dBm	
Receiver Reflectance	Rrx			-27	dBm	
LOS Hysteresis	LOS _H	0.5			dB	

Notes:

- 1. Average power figures are informative only, per IEEE 802.3ae.
- 2. Measured with Light Source 1550nm, ER=8.2dB; BER= $<10^{-12}@10.3125Gbps$, PRBS= 2^{31-1} NRZ.

IV. Electrical Characteristics

The following electrical characteristics are defined over the recommended operating environment unless otherwise specified.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Power Consumption	Р			3.5	W	1
Supply Current	I _{cc}			800	mA	
	Trans	mitter				
Single-ended Input Voltage Tolerance	V_{CC}	-0.3		4.0	V	
Differential Input Voltage Swing	$V_{\text{IN, PP}}$	120		820	mVpp	
Differential Input Impedance	Z_{IN}	90	100	110	Ohm	2
Transmit Disable Assert Time				10	us	
Transmit Disable Voltage	V_{DIS}	V _{CC} -1.3		V_{CC}	V	3
Transmit Enable Voltage	V_{EN}	V_{EE}		V _{EE} +0.8	V	
	Rec	eiver				
Differential Output Voltage Swing	V _{OUT, PP}	340	650	850	mVpp	
Differential Output Impedance	Z _{out}	90	100	110	Ohm	4
Data Output Rise/Fall Time	Tr/Tf			38	ps	5
LOS Assert Voltage	$V_{LOS}H$	V _{CC} -0.5		V_{CC}	V	6

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
LOS De-assert Voltage	$V_{LOS}L$	V_{EE}		V _{EE} +0.5	V	6
Power Supply Rejection	PSR	See Note 7 Below			7	

Notes:

- 1. Maximum total power value is specified across the full temperature and voltage range.
- 2. After internal AC coupling.
- 3. Or open circuit.
- 4. In to 100 ohms differential termination.
- 5. These are unfiltered 20-80% values.
- 6. Loss of signal is open collector to be pulled up with a $4.7k\Omega-10k\Omega$ resistor to 3.15-3.6V. Logic 0 indicates normal operation; Logic 1 indicates no signal detected.
- 7. Per section 2.7.1 in the XFP MSA specification 1.

V. Pin Definitions

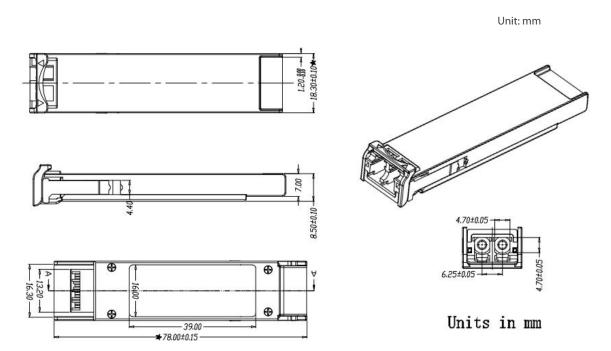
Pin	Symbol	Name/Description	Notes
1	GND	Module Ground	1
2	V _{EE} 5	Optional–5.2 Power Supply–Not Required	
3	Mod-Desel	Module De-select; When Held Low Allows the Module to, Respond to 2-Wire Serial Interface Commands	
4	Interrupt	Interrupt (Bar); Indicates Presence of an Important Condition Which can Beread over the Serial 2-Wire Interface	2
5	Tx_DIS	Transmitter Disable; Transmitter Laser Source Turned off	
6	V _{CC} 5	5 Power Supply	
7	GND	Module Ground	1
8	V _{CC} 3	3.3V Power Supply	
9	V _{CC} 3	3.3V Power Supply	
10	SCL	Serial 2-Wire Interface Clock	
11	SDA	Serial 2-Wire Interface Data Line	2
12	Mod_Abs	Module Absent; Indicates Module is Not Present. Grounded in the Module.	2
13	Mod_NR	Module Not Ready; FS's Defines It As a Logical OR Between Rx_LOS and Loss of Lock in Tx/Rx.	2
14	Rx_LOS	Receiver Loss of Signal Indicator	2
15	GND	Module Ground	1
16	GND	Module Ground	1
17	RD-	Receiver Inverted Data Output	
18	RD+	Receiver Non-Inverted Data Output	
19	GND	Module Ground	1

Pin	Symbol	Name/Description	Notes
20	V _{cc} 2	1.8V Power Supply–Not Required	
21	P_Down/RST	Power Down; When High, Places the Module in the Low Power Stand-by Mode and on the Falling Edge of P_Down Initiates a Module Reset.	
21	P_DOWII/RST	Reset; The Falling Edge Initiates a Complete Reset of the Module Including the 2-Wire Serial Interface, Equivalent to a Power Cycle.	
22	V _{cc} 2	1.8V Power Supply–Not Required	
23	GND	Module Ground	1
24	RefCLK+	Reference Clock Non-inverted Input, AC Coupled on the Host Board–Not Required	3
25	RefCLK-	Reference Clock Inverted Input, AC Coupled on the Host Board–Not Required	3
26	GND	Module Ground	1
27	GND	Module Ground	1
28	TD-	Transmitter Inverted Data Input	
29	TD+	Transmitter Non-inverted Data Input	
30	GND	Module Ground	1

Notes:

- 1. Module circuit ground is isolated from module chassis ground within the module.
- 2. Open collector; Should be pulled up with 4.7k–10k ohms on host board to a voltage between 3.15V and 3.6V.
- 3. A reference clock input is not required.

VI. Digital Diagnostic Functions


The following digital diagnostic characteristics are defined over the normal operating conditions unless otherwise specified.

Parameter	Symbol	Min.	Max.	Unit	Notes
Temperature Monitor Absolute Error	DMI_Temp.	-3	3	degC	Over Operating Temp.

Parameter	Symbol	Min.	Max.	Unit	Notes
Supply Voltage Monitor Absolute Error	DMI_V _{CC}	-0.15	0.15	V	Full Operating Range
Rx Power Monitor Absolute Error	DMI_Rx	-3	3	dB	
Bias Current Monitor	DMI_ Bias	-10%	10%	mA	
Tx Power Monitor Absolute Error	DMI_Tx	-3	3	dB	

VII. Mechanical Specifications

Test Center

I. Compatibility Testing

Each fiber optical transceiver has been tested in host device on site in FS Assured Program to ensure full compatibility with over 200 vendors.

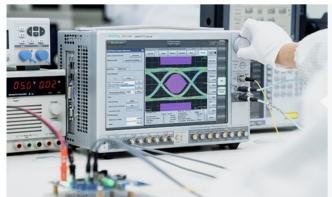
Cisco Catalyst C9500-24Y4C

Cisco MS425-16

Brocade VDX 6940-144S

Dell EMC Networking Z9100-ON

Force@tm S60-44T


HUAWEI S6720-30L-HI-24S

Above is part of our test bed network equipment. For more information, please click the Test Bed PDF. It will be updated in real time as we expand our portfolio.

II. Performance Testing

Each fiber optical transceiver has been fully tested in FS Assured Program equipped with world's most advanced analytical equipment to ensure that our transceivers work perfectly on your device.

1. TX/RX Signal Quality Testing

Equipped with the all-in-one tester integrated 4ch BERT & sampling oscilloscope, and variable optical attenuator to ensure the input and output signal quality.

- Eye Pattern Measurements: Jitter, Mask Margin, etc
- Average Output Power
- OMA
- Extinction Ratio
- · Receiver Sensitivity
- BER Curve

2. Reliability and Stability Testing

Subject the transceivers to dramatic changes in temperature on the thermal shock chamber to ensure reliability and stability of the transceivers.

- Commercial: 0 °C to 70 °C
- Extended: -5 °C to 85 °C
- Industrial: -40 °C to 85 °C

3. Transfer Rate and Protocol Testing

Test the actual transfer data rate and the transmission ability under different protocols with Network Master Pro.

- Etherne
- Fibre Channel
- SDH/SONET
- CPRI

4. Optical Spectrum Evaluation

 $\label{thm:potential} Evaluate various important parameters with the Optical Spectrum Analyzer to meet the industry standards.$

- Center Wavelength, Level
- OSNR
- SMSF
- Spectrum Width

Order Information

Part Number	Description
SFP-10G-T	10GBASE-T SFP+ Copper RJ-45 30m Transceiver
SFP-10GLRM-31	10GBASE-LRM SFP+ 1310nm 220m DOM Duplex LC Transceiver
XFP-10GLRM-31	10GBASE-LRM XFP 1310nm 220m DOM Duplex LC Transceiver
SFP-10GSR-85	10GBASE-SR SFP+ 850nm 300m DOM Duplex LC Transceiver
SFP-10GLR-31	10GBASE-LR SFP+ 1310nm 10km DOM Duplex LC Transceiver
SFP-10GER-55	10GBASE-ER SFP+ 1550nm 40km DOM Duplex LC Transceiver
SFP-10GZR-55	10GBASE-ZR SFP+ 1550nm 80km DOM Duplex LC Transceiver
XFP-10GZR-55	10GBASE-ZR XFP 1550nm 80km DOM Duplex LC Transceiver
SFP-10GZRC-55	10GBASE-ZR SFP+ 1550nm 100km DOM Transceiver
SFP-10GSR-85	Dual-Rate 1000BASE-SX and 10GBASE-SR SFP+ 850nm 300m DOM Transceiver
SFP-10GLR-31	Dual-Rate 1000BASE-LX and 10GBASE-LR SFP+ 1310nm 10km DOM Transceiver
SFP-10G-T-I	10GBASE-T SFP+ Copper RJ-45 30m Industrial Transceiver
SFP-10GSR-85-I	10GBASE-SR SFP+ 850nm 300m Industrial DOM Transceiver
SFP-10GLR-31-I	10GBASE-LR SFP+ 1310nm 10km Industrial DOM Transceiver
SFP-10GER-31-I	10GBASE-ER SFP+ 1550nm 40km Industrial DOM Transceiver
SFP-10GZR-55-I	10GBASE-ZR SFP+ 1550nm 80km Industrial DOM Transceiver

The information in this document is subject to change without notice. FS has made all efforts to ensure the accuracy of the information, but all information in this document does not constitute any kind of warranty.