1000BASE-CWDM SFP 1270nm~1610nm 20km Transceiver Module

CWDM-SFP1G-ZX

Application

- Gigabit Ethernet
- 1 × Fiber Channel
- CWDM Networks

Features

- Up to 1.25Gb/s Data Links
- Hot-Pluggable
- Duplex LC connector
- Up to 20km on 9/125µm SMF
- 18-Wavelength CWDM 1270n~1610nm Available
- CWDM DFB laser transmitter
- Single +3.3V Power Supply
- Monitoring Interface Compliant with SFF-8472
- Low power dissipation <1W typically
- Operating temperature range: 0 $^\circ\,$ C to 70 $^\circ\,$ C
- RoHS compliant and Lead Free

Description

FS's CWDM-SFP1G-ZX CWDM Transceiver products provide optical networking equipment manufacturers with a timely and cost effective tool in supporting the unceasing demand for higher bandwidth equipment build-outs in the enterprise access and metropolitan area networks. There are 18 center wavelengths available from 1270nm to 1610nm. The 20nm channel spacing allows for un-cooled laser operation, a high yield manufacturing process, and lower cost Mux/Demux technology, thus providing a complete cost effective solution for various data and telecom applications.

Product Specifications

I. General Specifications

Parameter	Symbol	Min	Тур.	Max	Unit	Ref.
Data Rate	BR		1.25		Gb/s	
Bit Error Rate	BER			10-12		
Max. Supported Link Length on 9/125µm SMF@1.25Gb/s	LMAX		20		km	
Total System Budget	LB	19			dB	

II. Absolute Maximum Ratings

Parameter	Symbol	Min	Тур.	Мах	Unit	Ref.
Storage Temperature	TS	-40		+85	°C	
Supply Voltage	VCC	-0.5		4	V	
Relative Humidity	RH	0		85	%	

III. Recommended Operating Environment

Parameter	Symbol	Min	Тур.	Max	Unit	Ref.
Case operating Temperature	Тс	0		+70	°C	
Supply Voltage	VCC	3.135		3.465	V	
Supply Current	lcc			250	mA	
Inrush Current	lsurge			lcc+30	mA	
Maximum Power	Pmax			1	W	

IV. Electrical Characteristics(TOP =Tc, VCC = 3.135 to 3.465 Volts)

Parameter	Symbol	Min	Тур.	Мах	Unit	Ref.
Transmitter						
Input differential impedance	Rin	90	100	110	W	1
Single ended data input swing	Vin PP	250		1200	mVp-p	
Transmit Disable Voltage	VD	Vcc – 1.3		Vcc	V	2
Transmit Enable Voltage	VEN	Vee		Vee+ 0.8	V	
Transmit Disable Assert Time	Tdessert			10	us	
		Receive	r			
Single ended data output swing	Vout,pp	300		800	mv	3
Data output rise time	tr			260	ps	4
Data output fall time	tf			260	ps	4
LOS Fault	Vlosfault	Vcc – 0.5		VCC_host	V	5
LOS Normal	Vlos norm	Vee		Vee+0.5	V	5
Power Supply Rejection	PSR	100			mVpp	6

Notes:

1. AC coupled.

2. Or open circuit.

3. Into 100 ohm differential termination.

4.20 - 80 %

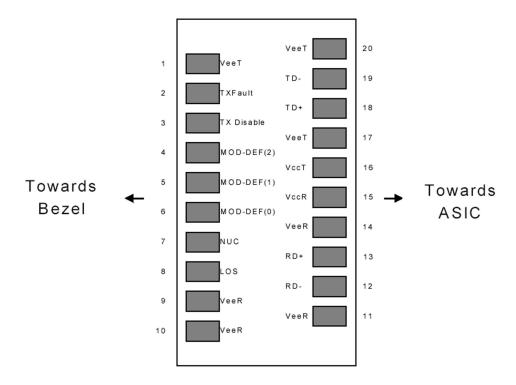
5. LOS is LVTTL. Logic 0 indicates normal operation; logic 1 indicates no signal detected.

6. All transceiver specifications are compliant with a power supply sinusoidal modulation of 20 Hz to 1.5MHz up to specified value applied through the power supply filtering network shown on page 23 of the Small Form-factor Pluggable (SFP) Transceiver Multi-Source Agreement (MSA), September 14, 2000.

V. Optical Characteristics(TOP =Tc, VCC = 3.135 to 3.465 Volts)

Parameter	Symbol	Min	Тур.	Мах	Unit	Ref.	
Transmitter							
Center Wavelength	λς	λ-6.5	λ	λ+6.5	nm		
Spectral Width	σ			1	nm		
Side Mode Suppression Ratio	SMSR	30			dB		
Optical Output Power	Pout	-5		0	dBm	1	
Optical Rise/Fall Time	tr / tf			260	ps	2	
Extinction Ratio	ER	9			dB		
Generated Jitter (peak to peak)	JTXp-p			0.07	UI	3	
Generated Jitter (rms)	JTXrms			0.007	UI	3	
Eye Mask for Optical Output	Compliant with IE	EE802.3z(class	s 1 laser safety)				
Receiver							
Optical Input Wavelength	λς	1260		1620	nm		
Receiver Overload	Pol	-8			dBm	4	
RX Sensitivity	Sen			-24	dBm	4	
RX_LOS Assert	LOS A	-40			dBm		
RX_LOS De-assert	LOS D			-25	dBm		
RX_LOS Hysteresis	LOS H	0.5			dB		

Notes:


1. The optical power is launched into SMF.

2.20-80%.

3. Jitter measurements taken using Agilent OMNIBERT 718 in accordance with GR-253.

4. Measured with PRBS 27 -1at 10-12 BER

VI. Pin Assignment

Figure 1. Diagram of Host Board Connector Block Pin Numbers and Names

Pin	Name	Function	Plug Seq	Notes
1	VeeT	Transmitter Ground	1	1
2	TX Fault	Transmitter Fault Indication	3	
3	TX Disable	Transmitter Disable	3	2
4	MOD-DEF2	Module Definition	2	3
5	MOD-DEF1	Module Definition 1	3	3
6	MOD-DEF0	Module Definition 0	3	3
7	Rate Select	Not Connected	3	4
8	LOS	Loss of Signal	3	5

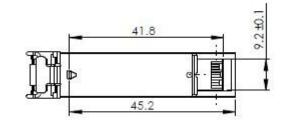
1000BASEŽCWDM SFP 1270NM-1610NM 20KM TRANSCEIVER

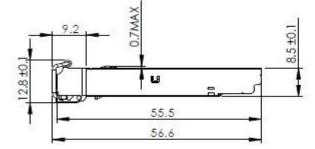
9	VeeR	Receiver Ground	1	1
10	10 VeeR Receiver Ground		1	1
11	VeeR	Receiver Ground		1
12	RD-	Inv. Received Data Out	3	6
13	RD+	Received Data Out	3	6
14	VeeR	Receiver Ground	3	1
15	VccR	Receiver Power	2	1
16	VccT	Transmitter Power	2	
17	VeeT	Transmitter Ground	1	
18	TD+	Transmit Data In	3	6
19	19 TD- Inv. Transmit In		3	6
20	VeeT	Transmitter Ground	1	

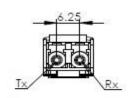
Notes:

1. Circuit ground is internally isolated from chassis ground.

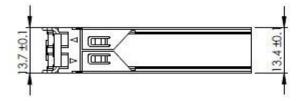
2. Laser output disabled on TDIS >2.0V or open, enabled on TDIS <0.8V.


3. Should be pulled up with 4.7k - 10 kohms on host board to a voltage between 2.0V and 3.6V. MOD_DEF(0) pulls line low to indicate module is plugged in.


4. Rate select is not used


5. LOS is open collector output. Should be pulled up with 4.7k – 10 kohms on host board to a voltage between 2.0V and 3.6V. Logic 0 indicates normal operation; logic 1 indicates loss of signal.

6. AC Coupled


VII. Mechanical Specifications

FS

Test Center

I. Compatibility Testing

Each fiber optical transceiver has been tested in host device on site in FS Assured Program to ensure full compatibility with over 200 vendors.

Cisco Catalyst C9500-24Y4C

Cisco MS425-16

Brocade VDX 6940-144S

Dell EMC Networking Z9100-ON

Force[®]tm S60-44T

HUAWEI S6720-30L-HI-24S

Above is part of our test bed network equipment. For more information, please click the <u>Test Bed PDF</u>. It will be updated in real time as we expand our portfolio.

II. Performance Testing

Each fiber optical transceiver has been fully tested in FS Assured Program equipped with world's most advanced analytical equipment to ensure that our transceivers work perfectly on your device.

1. TX/RX Single Quality Testing

Equipped with the all-in-one tester integrated 4ch BERT & sampling oscilloscope, and variable optical attenuator the input and output signal quality.

- Eye Pattern Measurements: Jitter, Mask Margin, etc
- Average Output Power
- OMA
- Extinction Ratio
- Receiver Sensitivity
- BER Curve

2. Reliability and Stability Testing

Subject the transceivers to dramatic in temperature on the thermal shock chamber to ensure reliability and stability of the transceivers.

- Commercial: 0°C to 70°C
- Extended: -5°C to 85°C
- Industrial: -40°C to 85°C

3. Transfer Rate and Protocol Testing

Test the actual transfer data rate and the transmission ability under different protocols with Networks Master Pro.

- Ethernet
- Fiber Channel
- SDH/SONET
- CPRI

4. Optical Spectrum Evaluation

Evaluate various important parameters with the Optical Spectrum Analyzer to meet the industry standards.

- Center Wavelength, Level
- OSNR
- SMSR
- Spectrum Width

Order Information

Part Number	Description
CWDM-SFP1G-ZX	SFP, 1000BASE-CWDM ,1270nm~1610nm, SMF, 20km, LC, DOM
CWDM-SFP1G-ZX	SFP, 1000BASE-CWDM ,1270nm~1610nm, SMF, 40km, LC, DOM
CWDM-SFP1G-ZX	SFP, 1000BASE-CWDM ,1270nm~1610nm, SMF, 80km, LC, DOM
CWDM-SFP1G-ZX	SFP, 1000BASE-CWDM ,1270nm~1610nm, SMF, 100km, LC, DOM
CWDM-SFP1G-ZX	SFP, 1000BASE-CWDM ,1270nm~1610nm, SMF, 120km, LC, DOM

公

The information in this document is subject to change without notice. FS has made all efforts to ensure the accuracy of the information, but all information in this document does not constitute any kind of warranty.

Copyright © 2009-2022 FS.COM All Rights Reserved.