

50GBASE-BX QSFP28 1331nmTX/1271nmRX 10km DOM Transceiver

QSFP28-50G-BX

Application

- 50GBASE-LR 50G Ethernet
- · Telecom Networking

Features

- Supports 53.125Gb/s aggregate bit rate
- 26.5625 Gbit/s channel electrical serial interface (50GAUI-2)
- Up to 10km transmission on SMF
- Single LC duplex connector
- Hot pluggable 38 pin electrical interface
- 1x50G PAM4 LAN-WDM transmitter
- Maximum power consumption 3.5W
- Operating case temperature: 0 ~ +70°C
- Single 3.3V power supply
- Compliant to IEEE 802.3 standard
- QSFP28 MSA compliant
- RoHS-6 complaint

Description

QSFP28 transceiver module is designed for use in 50 Gigabit Ethernet links on up to 10km of single mode fiber. They are compliant with the QSFP28 MSA (SFF-8679 SFF-8636, etc.), IEEE P802.3. Digital diagnostic functions are available via the I2C interface, as specified by the MSA. A block diagram is shown in Figure 1.

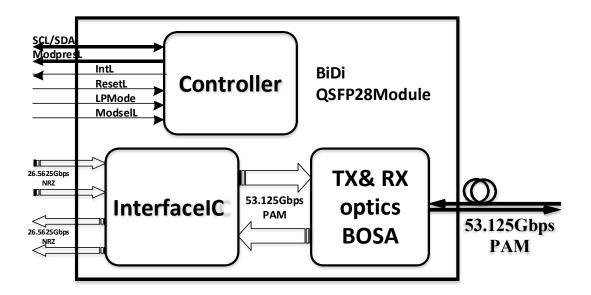


Figure 1. Transceiver Block Diagram

ModSelL:

The ModSelL is an input pin. When held low by the host, the module responds to 2-wire serial communication commands. The ModSelL allows the use of multiple modules on a single 2-wire interface bus. When the ModSelL is "High", the module shall not respond to or acknowledge any 2-wire interface communication from the host. ModSelL signal input node shall be biased to the "High" state in the module.

In order to avoid conflicts, the host system shall not attempt 2-wire interface communications within the Mod-SelL de-assert time after any modules are deselected. Similarly, the host shall wait at least for the period of the ModSelL assert time before communicating with the newly selected module. The assertion and de-asserting periods of different modules may overlap as long as the above timing requirements are met.

ResetL:

The ResetL pin shall be pulled to Vcc in the module. A low level on the ResetL pin for longer than the mini- mum pulse length (t_Reset init) initiates a complete module reset, returning all user module settings to their default state. Module Reset Assert Time (t_init) starts on the rising edge after the low level on the ResetL pin is released. During the execution of a reset (t_init) the host shall disregard all status bits until the module indicates a completion of the reset interrupt. The module indicates this by asserting "low" an IntL signal with the Data Not Ready bit negated. Note that on power up (including hot insertion) the module should post this completion of reset interrupt without requiring a reset.

LPMode:

The LPMode pin shall be pulled up to Vcc in the module. The pin is a hardware control used to put modules into a low power mode when high. By using the LPMode pin and a combination of the Power override, Power set and High Power Class Enable software control bits (Address A0h, byte 93 bits 0,1,2). The host controls how much power a module can consume.

ModPrsL:

ModPrsL is pulled up to Vcc Host on the host board and grounded in the module. The ModPrsL is asserted "Low" when inserted and deasserted "High" when the module is physically absent from the host connector.

IntL:

IntL is an output pin. When IntL is "Low", it indicates a possible module operational fault or a status critical to the host system. The host identifies the source of the interrupt using the 2-wire serial interface. The IntL pin is an open collector output and shall be pulled to host supply voltage on the host board. The INTL pin is deas- serted "High" after completion of reset, when byte 2 bit 0 (Data Not Ready) is read with a value of '0' and the flag field is read (see SFF-8636).

Product Specifications

I. Absolute Maximum Ratings

It has to be noted that the operation in excess of any individual absolute maximum ratings might cause permanent damage to this module.

Parameter	Symbol	Min	Тур.	Max	Unit	Ref.
Maximum Supply Voltage	Vcc	0		3.6	V	
Storage Temperature	Ts	-40		85	°C	
Relative Humidity	RH	10		85	%	1
Damage Threshold	THd	5.2			dBm	

Notes:

1.Non-condensing.

II. Recommended Operating Environment

Electrical and optical characteristics below are defined under this operating environment, unless otherwise specified.

Parameter	Symbol	Min	Тур.	Max	Unit
Supply Voltage	Vcc	3.135	3.3	3.465	V
Case Temperature	Тор	0		70	°C
Link Distance with G.652		0.002		10	km

III. Electrical Characteristics

Data Rate

Parameter	Symbol	Min	Тур.	Max	Unit	Ref.
Power Dissipation				3.5	W	
Supply Current	lcc			1.0101	Α	1
	Tra	nsmitter				2
Data Rate			26.5625		Gbps	
Differential Voltage PK-PK	Vpp			900	mV	
Common Mode Noise, RMS	Vrms			17.5	mV	
Differential Termination Resistance Mismatch				10	%	At 1 MHz
Transition Time	Trise/Tfall	10			ps	20%~80%
Eye Width	EW15	0.46			UI	
Eye Height	EH15	95			mV	
	Re	eceiver				3

_____www.fs.com

26.5625

Gbps

Differential Voltage PK-PK	Vpp		900	mV	
Common Mode Voltage	Vcm	-350	2850	mV	
Common Mode Noise, RMS	Vrms		17.5	mV	
Transition Time	Trise/Tfall	9.5		ps	20%~80%
Vertical Eye Closure (VEC)			5.5	dB	
Eye Width	EW15	0.57		UI	
Eye Height	EH15	228		mV	

Notes:

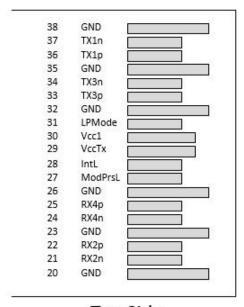
- 1. Maximum total power value is specified across the full temperature and voltage range.
- 2.Refer to OIF-CEI-03.1, CEI-28G-VSR Interface 13.3.2.
- 3. Refer to OIF-CEI-03.1, CEI-28G-VSR Interface 13.3.3.

IV. Optical Characteristics

50GBASE-LR Operation (EOL, TOP = 0 to $+70^{\circ}$ C, VCC = 3.135 to 3.465 Volts)

Parameter	Unit	Min	Тур.	Max	Ref.
	Transmitte	r			1
Signaling Speed	Gb/s		26.5625 ± 100 pp	om	
Transmit Wavelength	nm	1264.5	1271	1277.5	2
Average Launch Power	dBm	-4.5		4.2	

Outer Optical Modulation Amplitude, (OMAouter)	dBm	-1.5		4	
Launch Power in OMAouter Minus TDECQ	dBm	-2.9			
Transmitter and Dispersion Eye Closure for PAM4 (TDECQ), Each Lane	dB			3.2	
Extinction Ratio (ER)	dB	3.5			
Side-Mode Suppression Ratio (SMSR)	dB	30			
Transmitter Reflectance	dB			-26	
	Receiver				1
Signaling Speed	Gb/s		26.5625	± 100 ppm	
Signaling Speed Receive Wavelength	Gb/s	1324.5	26.5625	± 100 ppm	2
		1324.5			2
Receive Wavelength	nm			1337.5	2
Receive Wavelength Average Receiver Power	nm dBm	-10.8		1337.5	2
Receive Wavelength Average Receiver Power Damage Threshold	nm dBm dBm	-10.8		1337.5 4.2	2



LOS Assert	dBm	-30			
LOS Deassert	dBm			-11	
LOS Hysteresis	dB	0.5			
Receiver Reflectance	dB			-26	
Conditions of Stressed Receiver Se	nsitivity Test:				
Stressed Eye Closure for PAM4 (SECQ), Lane Under Test	dB		3.2		3
SECQ-10log10 (Ceq)	dBm			3.2	3

Notes:

- 1.Refer to IEEE P802.3.
- 2. The Module has two wavelength for interconnection, the TX and RX wavelength is paired for interconnection(TX:1331nm VS RX:1271nm; TX:1271nm VS RX:1331nm)
- 3.RS=max(-8.4, SECQ-9.8) (dBm). For the requirement of receiver sensitivity, the value of BER is 2e-4(before FEC) and within the average receive power, the BER is 1e-12(after FEC).

V. Pin Assignment

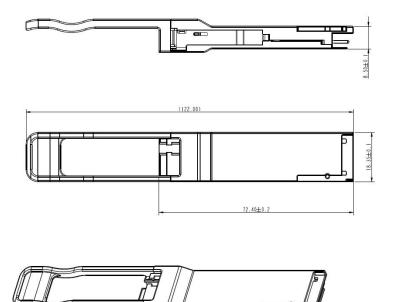
Top Side Viewed From Top Module Card Edge

GND 1 TX2n 2 3 TX2p GND 4 TX4n 5 6 GND 7 ModSelL 8 ResetL VccRx 10 SCL 11 SDA 12 GND 13 14 RX3p RX3n 15 GND 16 RX1p 17 RX1n 18 GND 19

> Bottom Side Viewed From Bottom

Pin	Symbol	Description	Notes
1	GND	Ground	1
2	Tx2n	Transmitter Inverted Data Input	
3	Tx2p	Transmitter Non-Inverted Data output	
4	GND	Ground	1
5	Tx4n	Reserved	
6	Tx4p	Reserved	
7	GND	Ground	1
8	ModSelL	Module Select	
9	ResetL	Module Reset	
10	Vcc Rx	+3.3V Power Supply Receiver	
11	SCL	2-Wire Serial Interface Clock	
12	SDA	2-Wire Serial Interface Data	
13	GND	Ground	1
14	Rx3p	Reserved	
15	Rx3n	Reserved	

16	GND	Ground	1
17	Rx1p	Receiver Non-Inverted Data Output	
18	Rx1n	Receiver Inverted Data Output	
19	GND	Ground	1
20	GND	Ground	1
21	Rx2n	Receiver Inverted Data Output	
22	Rx2p	Receiver Non-Inverted Data Output	
23	GND	Ground	1
24	Rx4n	Reserved	
25	Rx4p	Reserved	
26	GND	Ground	1
27	ModPrsL	Module Present	
28	IntL	Interrupt	
29	Vcc Tx	+3.3V Power supply transmitter	
30	Vcc1	+3.3V Power supply	
31	LPMode	Low Power Mode	



32	GND	Ground	1
33	Тх3р	Reserved	
34	Tx3n	Reserved	
35	GND	Ground	1
36	Tx1p	Transmitter Non-Inverted Data Input	
37	Tx1n	Transmitter Inverted Data Input	
38	GND	Ground	1

Notes:

1. Circuit ground is internally isolated from chassis ground

VI. Mechanical Dimension

Test Center

FS.COM transceivers are tested to ensure connectivity and compatibility in our test center before shipped out. FS.COM test center is supported by a variety of mainstream original brand switches and groups of professional staff, helping our customers make the most efficient use of our products in their systems, network designs and deployments.

The original switches could be found nowhere but at FS.COM test center, eg: Juniper MX960 & EX 4300 series, Cisco Nexus 9396PX & Cisco ASR 9000 Series, HP 5900 Series & HP 5406R ZL2 V3(J9996A), Arista 7050S-64, Brocade ICX7750-26Q & ICX6610-48, Avaya VSP 7000 MDA 2, etc.

Cisco ASR 9000 Series(A9K-MPA-1X40GE)

ARISTA 7050S-64(DCS-7050S-64)

Juniper MX960

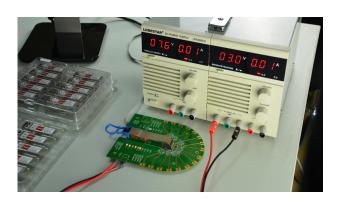
Brocade ICX 7750-26Q

Extreme Networks X670V VIM-40G4X

Mellanox M3601Q

Dell N4032F

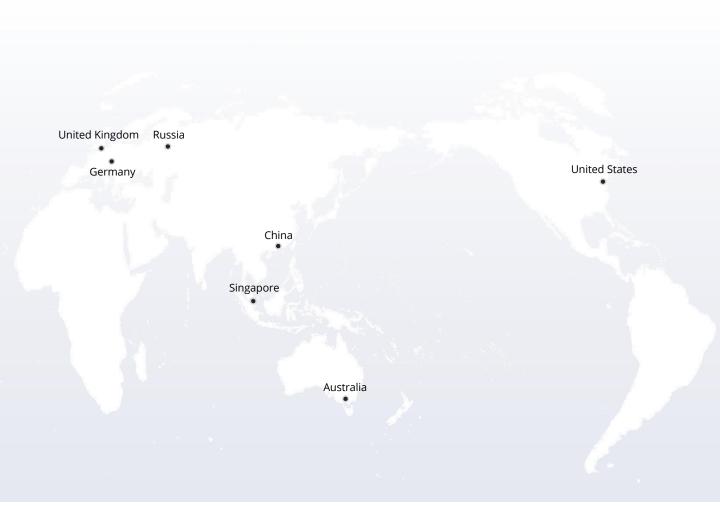
HP 5406R ZL2 V3(J9996A)


AVAYA 7024XLS(7002QQ-MDA)

Test Assured Program

FS.COM truly understands the value of compatibility and interoperability to each optics. Every module FS.COM provides must run through programming and an extensive series of platform diagnostic tests to prove its performance and compatibility. In our test center, we care of every detail from staff to facilities—professionally trained staff, advanced test facilities and comprehensive original-brand switches, to ensure our customers to receive the optics with superior quality.

Our smart data system allows effective product management and quality control according to the unique serial number, properly tracing the order, shipment and every part. Our in-house coding facility programs all of our parts to standard OEM specs for compatibility on all major vendors and systems such as Cisco, Juniper, Brocade, HP, Dell, Arista and so on.


With a comprehensive line of original-brand switches, we can recreate an environment and test each optics in practical application to ensure quality and distance. The last test assured step to ensure our products to be shipped with perfect package.

Order Information

Part Number	Description
QSFP28-50G-BX	QSFP28 50GBASE-BX 1271nmTX/1331nmRX 10km Transceiver
QSFP28-50G-BX	QSFP28 50GBASE-BX 1331nmTX/1271nmRX 10km Transceiver
QSFP28-50G-BX40	QSFP28 50GBASE-BX40 1295nmTX/1309nmRX 40km Transceiver
QSFP28-50G-BX40	QSFP28 50GBASE-BX40 1309nmTX/1295nmRX 40km Transceiver

The information in this document is subject to change without notice. FS has made all efforts to ensure the accuracy of the information, but all information in this document does not constitute any kind of warranty.