

OSFP 800GBASE-DR8 1310nm 500m Transceiver

OSFP800-DR8-B2

Application

- 800G Ethernet
- 2x 400GBASE-DR4
- Data Center
- Cloud Networks

Features

- Compliant with IEEE 802.3cu-2021:
- -2x400GBASE-DR4 optical interface
- Compliant with IEEE P802.3ck D2.2
- -2x400GAUI-4 C2M electrical interface
- Compliant with OSFP MSA HW Rev 4.1 Type 2 housing with Dual MPO-12 connector
- Compliant with CMIS Rev 5.0
- Maximum Power Consumption 16w
- Operating Temperature Range: 0 °C ~ +70 °C
- Two Wire Serial Interface with Digital Diagnostic Monitoring
- Class 1 Laser Safety

www fscom

Description

The Generic Compatible OSFP transceiver supports up to 500m link lengths over single-mode fiber (SMF) via dual MTP/MPO-12 connectors. This transceiver is compliant with IEE802.3ck, IEEE 802.3cu and OSFP MSA standards. The built-in digital diagnostics monitoring (DDM) allows access to real-time operating parameters. It is suitable for 800G Ethernet, Breakout 2x 400G DR4, Data Center and Cloud Networks.

Product Specifications

I. Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit	Notes
Storage Temperature Range	TS	-40	85	°C	
Supply Voltage	V _{CC}	-0.5	3.6	V	
Relative Humidity (non-condensing)	RH	5	95	%	
Data Input Voltage Differential	IV_{DIP} - $V_{DIN}I$		1	V	
Control Input Voltage	VI	-0.3	V _{CC} +0.5	V	
Control Output Current	I _O	-20	20	mA	

II. Recommended Operating Conditions

Parameter	Symbol	Min	Тур.	Max	Unit	Notes
Operating Case Temperature	T_{OPR}	0		70	°C	1
Power Supply Voltage	V _{CC}	3.135	3.3	3.465	V	
Instantaneous peak current at hot plug	I _{CC_IP}				mA	
Sustained peak current at hot plug	I _{CC_SP}				mA	
Maximum Power Dissipation	P_{D}			16	W	

<u>www.fs.com</u>

Maximum Power Dissipation, Low Power Mode	P_{DLP}				W	
Signalling Speed per Lane	DRL		53.125		GBd	
Control Input Voltage High	V_{IH}	V _{CC} *0.7		V _{CC} +0.3	V	
Control Input Voltage Low	$V_{\rm IL}$	-0.3		V _{CC} *0.3	V	
Two Wire Serial Interface Clock Rate				400	kHz	
Power Supply Noise 1 kHz - 1 MHz (p-p)				66	mVpp	
Operating Distance		2		500	m	

III. Optical Characteristics

Parameter	Symbol	Min	Тур.	Max	Unit	Notes
Wavelength	λ_{C}	1304.5	1311	1317.5	nm	
	Transmitte	er (per Lane)				
Side Mode Suppression Ratio	SMSR	30			dB	
Average Launch Power, each lane	AOP_L	-2.9		4.0	dBm	1
Outer Optical Modulation Amplitude (OMAouter), each Lane	T _{OMA}	-0.8		4.2	dBm	
Launch Power in OMAouter minus TDECQ, each lane	T _{OMA-TDECQ}	-2.2			dBm	
Transmitter and Dispersion Eye Closure for PAM4 (TDECQ), each lane	TDECQ			3.4	dB	
Average Launch Power of OFF Transmitter, each lane	T_{OFF}			-15	dBm	
Extinction Ratio	ER	3.5			dB	
Transmitter transition time (max)	Tr			17	ps	

RIN21.4OMA (max)	RIN			-136	dB/Hz				
Optical Return Loss Tolerance	ORL			21.4	dB				
Transmitter Reflectance	T_R			-26	dB	2			
Receiver (Per lane)									
Wavelength L0	λ_{CO}	1304.5	1311	1317.5	nm				
Damage Threshold, each Lane	AOP_D	5			dBm				
Average Receive Power, each Lane	AOP_R	-5.9		4	dBm				
Receive Power (OMAouter), each Lane	OMA_R			4.2	dBm				
Receiver Reflectance	RR			-26	dB				
Receiver Sensitivity (OMAouter), each Lane	S _{OMA}			Max(-3.9, SECQ - 5.3)	dBm	3			
Stressed Receiver Sensitivity (OMAouter), each Lane	SRS			-1.9	dBm	4			
Conditions of stressed receiver sensitivity test									
Stressed eye closure for PAM4 (SECQ), lane under test	SECQ		3.4		dB				
OMAouter of each aggressor lane			4.2						

Notes:

- 1: Average launch power, each lane (min) is informative and not the principal indicator of signal strength
- 2: Transmitter reflectance is defined looking into the transmitter
- 3.Receiver sensitivity (OMAouter), each lane (max) is informative and is defined for a transmitter with a value of SECQ up to 3.4 dB.
- 4. Measured with conformance test signal at TP3 for the BER = $2.4x10^{-4}$

IV. Electrical Characteristics(compliant with IEEE P802.3ck C2M))

Parameter	Symbol	Min	Тур.	Max	Unit	Notes
	Transmitte	r (per Lane)			
AC common-mode output Voltage (RMS)				25	mV	
Differential peak-to-peak output voltage Short mode Long mode				600 900	mV mV	
Eye height, differential	EH	15			mV	
Vertical eye closure	VEC			12	dB	
Common-mode to differential return loss	RLDc		802.3ck 120G-1		dB	
Effective return loss, ERL	ERL	8.5			dB	
Differential termination mismatch				10	%	
Transition time (20% to 80%)		8.5			ps	
	Receiver ((per Lane)				
Differential pk-pk input Voltage tolerance		900			mV	
AC common-mode RMS voltage tolerance (TP1a)		25			mV	
Differential to common-mode return loss	RLcd		802.3ck 120G-2		dB	
Effective return loss, ERL	ERL	8.5			dB	
Differential termination mismatch				10	%	
Single-ended voltage tolerance range		-0.4		3.3	V	
DC common-mode Voltage		-0.35		2.85	V	

V. Electrical Specification Low Speed Signal

Parameter	Symbol	Min	Max	Unit	Condition
Module output SCL and SDA	V _{OL}	0	0.4	V	
Module Input SCL and SDA	V_{IL}	-0.3	V _{CC} *0.3	V	
Module Input SCL and SDA	V_{IH}	V _{CC} *0.7	V _{CC} +0.5	V	
	V_{IL}	-0.3	0.8	V	
LPMode/TxDis, ResetL and ModSelL	V_{IH}	2	V _{CC} +0.3	V	
IntL/RxLos	V_{OL}	0	0.4	V	
	V_{OH}	V _{CC} -0.5	V _{CC} +0.3	V	

VI. Pin Definitions

Top Side (viewed from top)

60 GND 59 TX1p 58 TX1n 57 GND 56 ТХ3р 55 TX3n 54 GND ----- Module Card Edge ----53 TX5p 52 TX5n 51 GND 50 ТХ7р 49 TX7n 48 GND 47 SDA 46 VCC 45 VCC 44 INT/RSTn 43 GND 42 RX8n 41 RX8p 40 GND 39 RX6n 38 RX6p 37 GND 36 RX4n 35 RX4p GND 34 RX2n 33 32 RX2p GND 31

Bottom Side (viewed from bottom)

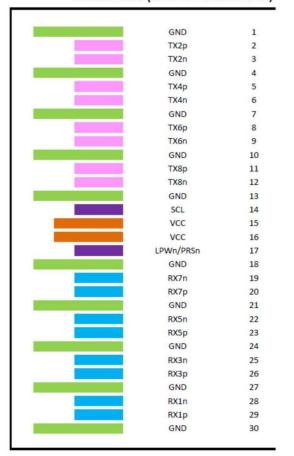


Figure 1 – Pinout definitions of OSFP module inputs/outputs

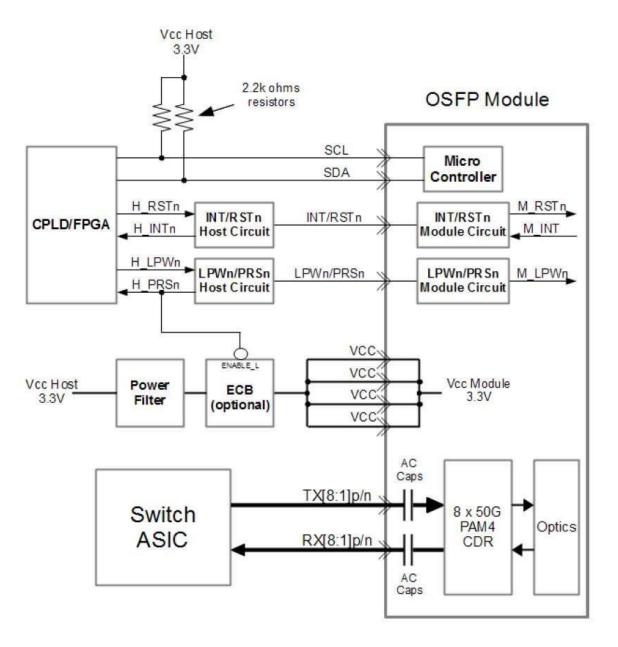
VII. Pin Definitions

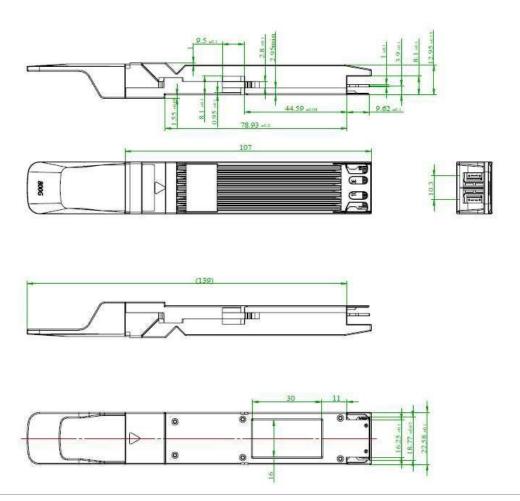
PIN	Symbol	Description	Logic	Note
1	GND	Ground		
2	TX2p	Transmitter Data Non-Inverted	CML-I	
3	TX2n	Transmitter Data Inverted	CML-I	
4	GND	Ground		
5	TX4p	Transmitter Data Non-Inverted	CML-I	
6	TX4n	Transmitter Data Inverted	CML-I	
7	GND	Ground		
8	ТХбр	Transmitter Data Non-Inverted	CML-I	
9	TX6n	Transmitter Data Inverted	CML-I	
10	GND	Ground		
11	ТХ8р	Transmitter Data Non-Inverted	CML-I	
12	TX8n	Transmitter Data Inverted	CML-I	
13	GND	Ground		
14	SCL	2-wire Serial interface clock	LVCMOS-I/O	
15	VCC	+3.3V Power		
16	VCC	+3.3V Power		
17	LPWn/P RSn	Low-Power Mode / Module Present	Multi-Level	
18	GND	Ground		
19	RX7n	Receiver Data Inverted	CML-O	
20	RX7p	Receiver Data Non-Inverted	CML-O	
21	GND	Ground		

22	RX5n	Receiver Data Inverted	CML-O
23	RX5p	Receiver Data Non-Inverted	CML-O
24	GND	Ground	
25	RX3n	Receiver Data Inverted	CML-O
26	RX3p	Receiver Data Non-Inverted	CML-O
27	GND	Ground	
28	RX1n	Receiver Data Inverted	CML-O
29	RX1p	Receiver Data Non-Inverted	CML-O
30	GND	Ground	
31	GND	Ground	
32	RX2p	Receiver Data Non-Inverted	CML-O
33	RX2n	Receiver Data Inverted	CML-O
34	GND	Ground	
35	RX4p	Receiver Data Non-Inverted	CML-O
36	RX4n	Receiver Data Inverted	CML-O
37	GND	Ground	
38	RX6p	Receiver Data Non-Inverted	CML-O
39	RX6n	Receiver Data Inverted	CML-O
40	GND	Ground	
41	RX8p	Receiver Data Non-Inverted	CML-O
42	RX8n	Receiver Data Inverted	CML-O
43	GND	Ground	
44	INT/RSTn	Module Interrupt / Module Reset	Multi-Level
45	VCC	+3.3V Power	
46	VCC	+3.3V Power	
47	SDA	2-wire Serial interface data	LVCM OS-I/O
48	GND	Ground	
49	TX7n	Transmitter Data Inverted	CML-I
50	ТХ7р	Transmitter Data Non-Inverted	CML-I
51	GND	Ground	
52	TX5n	Transmitter Data Inverted	CML-I
53	TX5p	Transmitter Data Non-Inverted	CML-I
54	GND	Ground	

55	TX3n	Transmitter Data Inverted	CML-I
56	ТХ3р	Transmitter Data Non-Inverted	CML-I
57	GND	Ground	
58	TX1n	Transmitter Data Inverted	CML-I
59	TX1p	Transmitter Data Non-Inverted	CML-I
60	GND	Ground	

VIII. Recommended OSFP Host Board Schematic




Figure 2. Recommended OSFP Host Board Schematic

IX. Digital Diagnostics

Parameter	Range	Accuracy	Unit	Calibration
Temperature	0 to 70	±3	۰C	Internal
Voltage	0 to V _{CC}	0.1	V	Internal
Tx Bias Current (Each Lane)	0 to 100	10%	mA	Internal
Tx Output Power (Each Lane)	-2.8 to +5.3	±3	dB	Internal
Rx Receive Power (Each Lane)	-9.1 to +5.3	±3	dB	Internal

X. Mechanical Diagram

Test Center

I. Compatibility Testing

Each fiber optical transceiver has been tested in host device on site in FS Assured Program to ensure full compatibility with over 200 vendors.

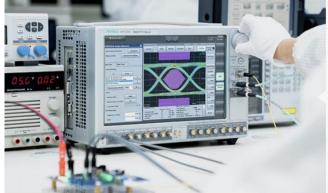
Cisco Catalyst C9500-24Y4C

Cisco MS425-16

Brocade VDX 6940-144S

Dell EMC Networking Z9100-ON

Force 10 tm S60-


HUAWEI S6720-30L-HI-24S

Above is part of our test bed network equipment. For more information, please click the Test Bed PDF. It will be updated in real time as we expand our portfolio.

II. Performance Testing

Each fiber optical transceiver has been fully tested in FS Assured Program equipped with world's most advanced analytical equipment to ensure that our transceivers work perfectly on your device.

1. TX/RX Signal Quality Testing

Equipped with the all-in-one tester integrated 4ch BERT & sampling oscilloscope, and variable optical attenuator to ensure the input and output signal quality.

- Eye Pattern Measurements: Jitter, Mask Margin, etc
- Average Output Power
- OMA
- Extinction Ratio
- Receiver Sensitivity
- BER Curve

2. Reliability and Stability Testing

Subject the transceivers to dramatic changes in temperature on the thermal shock chamber to ensure reliability and stability of the transceivers.

- Commercial: 0 °C to 70 °C
- Extended: -5 °C to 85 °C
- Industrial: -40 °C to 85 °C

3. Transfer Rate and Protocol Testing

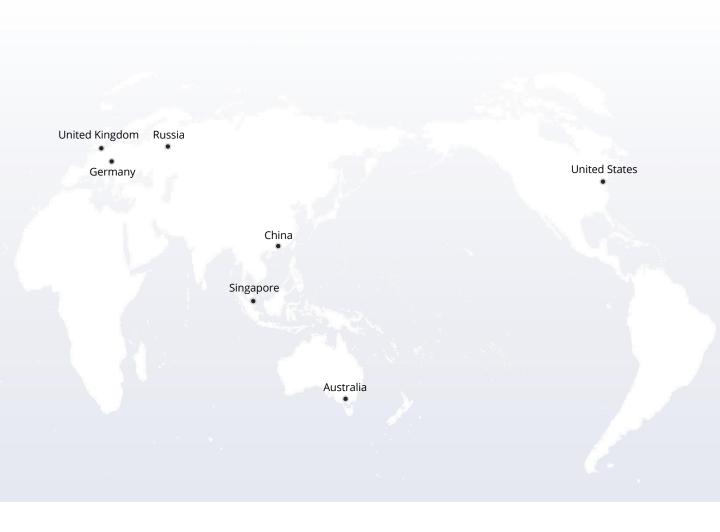
Test the actual transfer data rate and the transmission ability under different protocols with Network Master Pro.

- Ethernet
- Fibre Channel
- SDH/SONET
- CPRI

4. Optical Spectrum Evaluation

 $\label{thm:potential} Evaluate various important parameters with the Optical Spectrum Analyzer to meet the industry standards.$

- Center Wavelength, Level
- OSNR
- SMSF
- Spectrum Width



Ordering Information

Part Number	Description
OSFP800-2FR4-A2	OSFP 800GBASE-FR4 1310nm 2km Transceiver
OSFP800-DR8-B2	OSFP 800GBASE-DR8 1310nm 500m Transceiver

<u>www.fs.com</u> 12

The information in this document is subject to change without notice. FS has made all efforts to ensure the accuracy of the information, but all information in this document does not constitute any kind of warranty.