

QSFP-DD 400GBASE-LR8 1310nm 10km Transceiver

QSFPDD-LR8-400G

Application

- 400GBASE-LR8 400G Ethernet
- Data Center

Features

- Compliant with IEEE 802.3bs standard: -400GBASE-LR8 optical interface
 - -400GAUI-8 electrical interface
- Compliant with QSFP-DD MSA HW Rev 3.0 with duplex LC connector
- Maximum power consumption tbd W
- Case operating temperature $0^\circ\,$ C to $70^\circ\,$ C
- Two wire serial Interface with digital diagnostic monitoring
- Complies with EU Directive 2011/65/EU (RoHS compliant)
- Class 1 Laser

Product Specifications

I. Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit	Notes
Storage Temperature	Ts	-40	85	°C	
Supply Voltage	Vcc	-0.5	3.6	V	
Relative Humidity (non-condensing)	RH	5	95	%	
Data Input Voltage Differential	IV_{DIP} - $V_{DIN}I$		1	V	
Control Input Voltage	V_{l}	-0.3	Vcc+0.5	V	
Control Output Current	I _o	-20	20	mA	

II. Recommended Operating Environment

Parameter	Symbol	Min	Тур.	Max	Unit	Notes
Operating Case Temperature	T_{OPR}	0		70	°C	1
Power Supply Voltage	Vcc	3.135	3.3	3.465	V	
Instantaneous peak current at hot plug	I _{CC_IP}			TBD	mA	
Sustained peak current at hot plug	I _{CC_SP}			TBD	mA	
Maximum Power Dissipation	p_D			TBD	W	
Maximum Power Dissipation, Low Power Mode	P_{DLP}			TBD	W	
Signalling Speed per Lane	DRL		26.5625		Gbd	
Control Input Voltage High	V_{IH}	V _{CC} *0.7		V _{CC} +0.3	V	
Control Input Voltage Low	V_{IL}	-0.3		V _{CC} *0.3	V	

Two Wire Serial Interface Clock Rate			400	kHz	
Power Supply Noise			50	mVpp	
Rx Differential Data Output Load		100		Ohm	
Operating Distance	2		10000	m	

III. Optical Characteristics

The following tables list the performance specifications for the various functional blocks of the integrated optical transceiver module.

Parameter	Symbol	Min	Тур.	Max	Unit	Notes			
Transmitter									
Wavelength L0	λ_{CO}	1272.55	1273.55	1274.54	nm				
Wavelength L1	λ_{C1}	1276.89	1277.89	1278.89	nm				
Wavelength L2	λ_{C2}	1281.25	1282.26	1283.27	nm				
Wavelength L3	λ_{C3}	1285.65	1286.67	1287.68	nm				
Wavelength L4	λ_{C4}	1294.53	1295.56	1296.59	nm				
Wavelength L5	λ_{C5}	1299.02	1300.06	1301.09	nm				
Wavelength L6	λ_{C6}	1303.54	1304.59	1305.63	nm				
Wavelength L7	λ_{C7}	1308.09	1309.14	1310.19	nm				
Side Mode Suppression Ratio	SMSR	30			dB				
Total Average Launch Power	AOP_T			13.2	dBm				
Average Launch Power, each lane	AOP_L	-2.8		5.3	dBm	1			
Outer Optical Modulation Amplitude (OMA _{outer}), each Lane	T_{OMA}	0.2		5.7	dBm				
Difference in Launch Power between any two Lanes (OMA _{outer})	D _{T_OMA}			4	dB				

Launch Power in OMA _{outer} minus TDECQ, each lane for ER> 4.5dB	$T_{OMA-TDECQ}$	-1.2		dBm	
Launch Power in OMA _{outer} minus TDECQ, each lane for ER< 4.5dB	T _{oma-tdecq}	-1.1		dBm	
Transmitter and Dispersion Eye Closure for PAM4 (TDECQ), each lane	TEDCQ		3.3	dB	
Average Launch Power of OFF Transmitter, each lane	T_{OFF}		-30	dBm	
Extinction Ratio	ER	3.5		dB	
RIN _{15.1} OMA	RIN		-132	dB/Hz	
Optical Return Loss Tolerance	ORL		15.1	dB	
Transmitter Reflectance	T_R		-26	dB	2

- $1. Average\ launch\ power,\ each\ lane\ (min)\ is\ informative\ and\ not\ the\ principal\ indicator\ of\ signal\ strength$
- 2. Transmitter reflectance is defined looking into the transmitter

Parameter	Symbol	Min	Тур.	Max	Unit	Notes
		Receiver				
Wavelength L0	λ_{C0}	1272.55	1273.55	1274.54	nm	
Wavelength L1	λ_{C1}	1276.89	1277.89	1278.89	nm	
Wavelength L2	λ_{C2}	1281.25	1282.26	1283.27	nm	
Wavelength L3	λ_{C3}	1285.65	1286.67	1287.68	nm	
Wavelength L4	λ_{C4}	1294.53	1295.56	1296.59	nm	
Wavelength L5	λ_{C5}	1299.02	1300.06	1301.09	nm	
Wavelength L6	λ_{C6}	1303.54	1304.59	1305.63	nm	
Wavelength L7	λ_{C7}	1308.09	1309.14	1310.19	nm	

Damage Threshold, each Lane	AOP_D	6.3		dBm	
Average Receive Power, each Lane	AOP_R	-9.1	5.3	dBm	
Receive Power (OMA $_{ m outer}$) , each Lane	OMA_R		5.7	dBm	
Difference in Receive Power between any two Lanes (OMA _{outer})	D_R_OMA		4.5	dB	
Receiver Reflectance	RR		-26	dB	
Receiver Sensitivity (OMA _{outer}), each Lane	S _{OMA}		-7.1	dBm	1
Stressed Receiver Sensitivity (OMA _{outer}), each Lane	SRS		-4.7	dBm	2

IV. Electrical Characteristics

Table 1 - Electrical Specification High Speed Signal (compliant with IEEE 802.3bs 400GAUI-8)

Parameter	Symbol	Min	Тур.	Max	Unit	Notes
	Transn	nitter (Mod	ule Input)			
Differential pk-pk input Voltage tolerance		900			mV	
Differential termination mismatch				10	%	
Single-ended voltage tolerance range		-0.4		3.3	V	
DC common mode Voltage		-350		2850	mV	
	Receiv	er (Module	Output)			
AC common-mode output Voltage (RMS)				17.5	mV	
Differential output Voltage				900	mV	

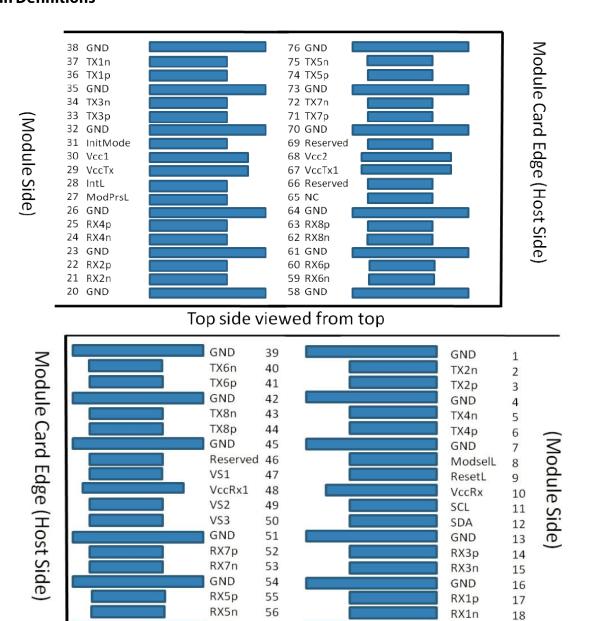
^{1.} Receiver sensitivity (OMAouter), each lane (max) is informative and is defined for a transmitter with SECQ of 0.9 dB

^{2.} Measured with conformance test signal at TP3 for the BER = 2.4×10^{-4}

Near-end Eye height, differential	70		UI	
Far-end Eye height, differential	30		UI	
Far end pre-cursor ratio		2.5	%	
Differential Termination Mismatch		10	%	
Transition Time (min, 20% to 80%)	9.5		ps	
DC common mode Voltage	-350	2850	mV	

Table 2 - Electrical Specification Low Speed Signal (compliant with QSFP-DD HW Rev 3.0)

Parameter	Symbol	Min	Max	Unit	Condition
Module output SCL and SDA	V_{OL}	0	0.4	V	
	V_{OH}	V _{CC} -0.5	V _{CC} +0.3	V	
Module Input SCL and SDA	$V_{\rm IL}$	-0.3	V _{CC} *0.3	V	
Module Input SCL and SDA	V_{IH}	V _{CC} *0.7	V _{CC} +0.5	V	
InitMode, ResetL and ModSelL	$V_{\rm IL}$	-0.3	0.8	V	
mitwode, resett and modsett	V_{IH}	2	V _{CC} +0.3	V	
lmal	V_{OL}	0	0.4	V	
IntL	V_{OH}	V _{CC} -0.5	V _{CC} +0.3	V	


V. Digital Diagnostic Monitoring Information

Parameter	Range	Accuracy	Unit	Calibration
Temperature	0 to 70	±3	°C	Internal
Voltage	0 to Vcc	0.1	V	Internal
Tx Bias Current (Each Lane)	0 to 100	10%	mA	Internal

Tx Output Power (Each Lane)	-3.5 to +5.3	±3dB	dBm	Internal
Rx Receive Power (Each Lane)	-9.1 to +5.3	±3dB	dBm	Internal

VI. Pin Definitions

Bottom side viewed from bottom

GND

19

Figure 1 – Pin definitions of the module high speed inputs/outputs

57

GND

Pin Definitions

Pin #	Logic	Symbol	Definition
1		GND	Ground
2	CML-I	Tx2n	Transmitter Inverted Data Input
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input
4		GND	Ground
5	CML-I	Tx4n	Transmitter Inverted Data Input
6	CML-I	Тх4р	Transmitter Non-Inverted Data Input
7		GND	Ground
8	LVTTL-I	ModSelL	Module Select
9	LVTTL-I	ResetL	Module Reset
10		VccRx	+3.3 V Power Supply Receiver
11	LVCMOS-I/O	SCL	2-wire serial interface clock
12	LVCMOS-I/O	SDA	2-wire serial interface data
13		GND	Ground
14	CML-O	Rx3p	Receiver Non-Inverted Data Output
15	CML-O	Rx3n	Receiver Inverted Data Output
16		GND	Ground
17	CML-O	Rx1p	Receiver Non-Inverted Data Output
18	CML-O	Rx1n	Receiver Inverted Data Output
19		GND	Ground
20		GND	Ground
21	CML-O	Rx2n	Receiver Inverted Data Output
22	CML-O	Rx2p	Receiver Non-Inverted Data Output

23		GND	Ground
24	CML-O	Rx4n	Receiver Inverted Data Output
25	CML-O	Rx4p	Receiver Non-Inverted Data Output
26		GND	Ground
27	LVTTL-O	ModPrsL	Module Present
28	LVTTL-O	IntL	Interrupt
29		VccTx	+3.3V Power supply transmitter
30		Vcc1	+3.3V Power supply
31	LVTTL-I	InitMode	Initialization mode
32		GND	Ground
33	CML-I	Тх3р	Transmitter Non-Inverted Data Input
34	CML-I	Tx3n	Transmitter Inverted Data Input
35		GND	Ground
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input
37	CML-I	Tx1n	Transmitter Inverted Data Input
38		GND	Ground
39		GND	Ground
40	CML-I	Tx6n	Transmitter Inverted Data Input
41	CML-I	Тхбр	Transmitter Non-Inverted Data Output
42		GND	Ground
43	CML-I	Tx8n	Transmitter Inverted Data Input
44	CML-I	Тх8р	Transmitter Non-Inverted Data Output

45		GND	Ground
46		Reserved	
47		VS1	Module Vendor Specific 1
48		VccRx1	3.3V Power Supply
49		VS2	Module Vendor Specific 2
50		VS3	Module Vendor Specific 3
51		GND	Ground
52	CML-O	Rx7p	Receiver Non-Inverted Data Output
53	CML-O	Rx7n	Receiver Inverted Data Output
54		GND	Ground
55	CML-O	Rx5p	Receiver Non-Inverted Data Output
56	CML-O	Rx5n	Receiver Inverted Data Output
57		GND	Ground
58		GND	Ground
59	CML-O	Rx6n	Receiver Inverted Data Output
60	CML-O	Rхбр	Receiver Non-Inverted Data Output
61		GND	Ground
62	CML-O	Rx8n	Receiver Inverted Data Output
63	CML-O	Rx8p	Receiver Non-Inverted Data Output
64		GND	Ground
65		NC	No Connected

66		Reseved	
67		VccTx1	3.3V Power Supply
68		Vcc2	3.3V Power Supply
69		Reseved	
70		GND	Ground
71	CML-I	Тх7р	Transmitter Non-Inverted Data Output
72	CML-I	Tx7n	Transmitter Inverted Data Output
73		GND	Ground
74	CML-I	Тх5р	Transmitter Non-Inverted Data Output
75	CML-I	Tx5n	Transmitter Inverted Data Output
76		GND	Ground

VII. Recommended QSFP-DD Host Board Schematic

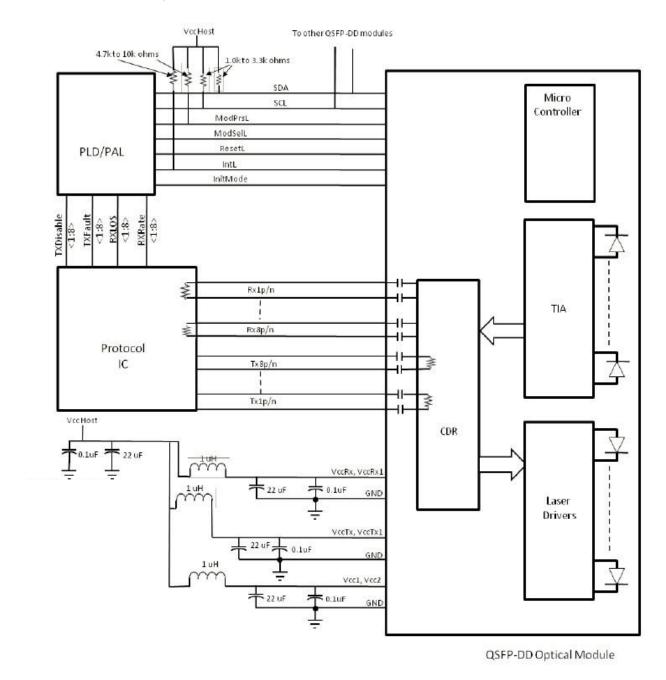


Figure 2 – Recommended QSFP-DD Host Board Schematic

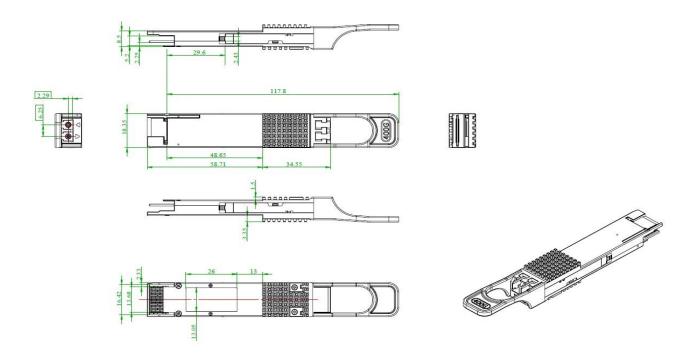
Notes:

- 1. Filter capacitor values are informative and vary depending on applications, 0.1 uF capacitors should be placed in close proximity to power pins and may be duplicated for individual pins to provide additional high frequency filtering.
- 2.Vcc1 and/or Vcc2 may be connected to VccTx, VccTx1 or VccRx, VccRx1 provided the applicable derating of the maximum current limit is used.

Table 3 - Timing for Soft Control and Status Functions

Parameter	Symbol	Min	Max	Unit	Notes
MgmtInit Duration			2000	ms	
ResetL Assert Time	t_reset_init	10		μs	
IntL Assert Time	ton_IntL		200	ms	
IntL Deassert Time	toff_IntL		500	ms	
Rx LOS Assert Time	ton_los		100	ms	
Tx Fault Assert Time	ton_Txfault		200	ms	
Flag Assert Time	ton_flag		200	ms	
Mask Assert Time	ton_mask		100	ms	
Mask Deassert Time	toff_mask		100	ms	
Application or Rate Select Change Time	t_ratesel		N/A	ms	1

Table 4 - I/O Timing for Squelch and Disable


Parameter	Symbol	Min	Max	Unit	Notes
Rx Squelch Assert Time	ton_Rxsq		15	ms	
Rx Squelch Deassert Time	toff_Rxsq		15	ms	
Tx Squelch Assert Time	ton_Txsq		400	ms	1
Tx Squelch Deassert Time	toff_Txsq		400	ms	1
Tx Disable Assert Time	ton_Txdis		100	ms	

^{1.} This feature is not supported

Tx Disable Deassert Time	toff_Txdis	400	ms	
Rx Output Disable Assert Time	ton_Rxdis	100	ms	
Rx Output Disable Deassert Time	toff_Rxdis	100	ms	
Squelch Disable Assert Time	ton_sqdis	100	ms	
Squelch Disable Deassert Time	toff_sqdis	100	ms	

畑. Mechanical Diagram

IX. Warnings

Handling Precautions: This device is susceptible to damage as a result of electrostatic discharge (ESD). A static free environment is highly recommended. Follow guidelines according to proper ESD procedures.

Laser Safety: Radiation emitted by laser devices can be dangerous to human eyes. Avoid eye exposure to direct or indirect radiation.

^{1.}Not implemented by default

Test Center

FS.COM transceivers are tested to ensure connectivity and compatibility in our test center before shipped out. FS.COM test center is supported by a variety of mainstream original brand switches and groups of professional staff, helping our customers make the most efficient use of our products in their systems, network designs and deployments.

The original switches could be found nowhere but at FS.COM test center, eg: Juniper MX960 & EX 4300 series, Cisco Nexus 9396PX & Cisco ASR 9000 Series, HP 5900 Series & HP 5406R ZL2 V3(J9996A), Arista 7050S-64, Brocade ICX7750-26Q & ICX6610-48, Avaya VSP 7000 MDA 2, etc.

Cisco ASR 9000 Series(A9K-MPA-1X40GE)

ARISTA 7050S-64(DCS-7050S-64)

Juniper MX960

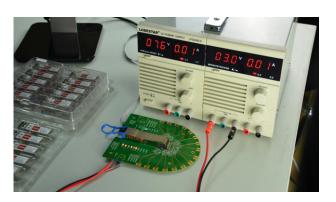
Brocade ICX 7750-26Q

Extreme Networks X670V VIM-40G4X

Mellanox M3601Q

Dell N4032F

HP 5406R ZL2 V3(J9996A)


AVAYA 7024XLS(7002QQ-MDA)

Test Assured Program

FS.COM truly understands the value of compatibility and interoperability to each optics. Every module FS.COM provides must run through programming and an extensive series of platform diagnostic tests to prove its performance and compatibility. In our test center, we care of every detail from staff to facilities—professionally trained staff, advanced test facilities and comprehensive original-brand switches, to ensure our customers to receive the optics with superior quality.

Our smart data system allows effective product management and quality control according to the unique serial number, properly tracing the order, shipment and every part. Our in-house coding facility programs all of our parts to standard OEM specs for compatibility on all major vendors and systems such as Cisco, Juniper, Brocade, HP, Dell, Arista and so on.

With a comprehensive line of original-brand switches, we can recreate an environment and test each optics in practical application to ensure quality and distance.


The last test assured step to ensure our products to be shipped with perfect package.

Order Information

Part Number	Description
QSFPDD-SR8-400G	QSFP-DD 400GBASE-SR8 850nm 100m Transceiver
QSFPDD-LR4-400G	QSFP-DD 400GBASE-LR4 1310nm 10km Transceiver
QSFPDD-LR8-400G	QSFP-DD 400GBASE-LR8 1310nm 10km Transceiver

The information in this document is subject to change without notice. FS has made all efforts to ensure the accuracy of the information, but all information in this document does not constitute any kind of warranty.