

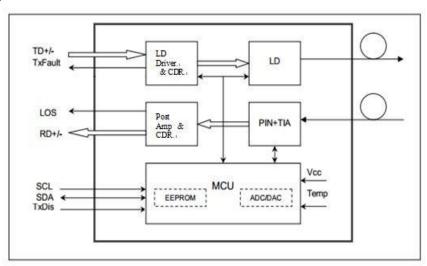
32GBASE-SR SFP28 850nm 100m DOM Transceiver

Application

• Tri-Rate 8G/16G/32G Fibre Channel

Features

- Up to 28.05Gb/s bi-directional data links
- Hot-Pluggable SFP28 form factor
- Built-in digital diagnostic functions
- 850nm VCSEL laser and PIN photo-detector
- Duplex LC receptacle
- Single 3.3V power supply
- Power dissipation < 1W
- · RoHS-6 compliant


- Commercial case temperature range:
 0° C to 70° C
- Internal CDR on both Transmitter and Receiver channel

Description

The SFP28-32G-SW is a single-channel, pluggable, fiber-optic for use in 8G/16G/32G Fibre Channel links up to 28.05Gb/s data rate over multimode fiber. They are compliant with FC-PI- 6a, SFF-8472 Rev 12.2c, and compatible with SFF-8432b and applicable portions of SFF-8431 Rev. 4.1d. The transceiver is RoHS compliant and per Directive 2011/65/EU.

Block Diagram

I. Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit	Note
Supply Voltage	Vcc	0	3.6	V	
Storage Temperature	Ts	-40	+85	° C	
Operating Humidity	-	5	85	%	

II. General Specifications

Parameter	Symbol	Min	Typical	Max	Unit	Note
Commercial Temperature	Тс	0		+70	° C	
Power Supply Voltage	Vcc	3.13	3.3	3.47	V	
Power Supply Current	lcc			300	mA	
Fiber Length on 50/125µm high- bandwidth(OM3) MMF				150 100 70	m	1 2 3
Fiber Length on 50/125µm high- bandwidth(OM4) MMF				190 125 100	m	1 2 3

Notes:

- 1. At 8.5 Gb/s Fibre Channel data rate.
- 2. At 14.025 Gb/s Fibre Channel data rate.
- 3. At 28.05Gb/s Fibre Channel data rate..

III. Optical and Electrical Characteristics

Para	ameter	Symbol	Min	Typical	Max	Unit	Note
			Transmitte				
Dat	a Rate	BR		8.5 14.025 28.05		Gbps	
Centre V	Vavelength	λς	840	850	860	nm	
Spectral \	Width (RMS)	σ			0.6	nm	
14	Output Power 8.5 1.025 8.05	P_{avg}	-8.2 -7.8 -6.7		2	dBm	
14	Power OMA 8.5 1.025 8.05	P _{OMA}	-5.2 -4.8 -3.2			dBm	
Extinct	ion Ration	ER	2			dB	
28.0	Data Input Swing D5Gb/s D/s & 8.5Gb/s	$V_{IN,PP}$	50 180		900 700	mV	
Input Differe	ntial Impedance	Z _{IN}	90	100	110	Ω	
TX Disable	Disable		2.0		Vcc	V	
	Enable		0		0.8	V	
TX Fault	Fault		2.0		Vcc	V	
I A Fault	Normal		0		0.8	V	

Receiver

Data Rate	BR		8.5 14.025 28.05		Gbps	1
Centre Wavelength	λς	840	850	860	nm	
Unstressed Receiver Sensitivity (OMA) 28.05Gb/s 14.025Gb/s 8.5Gb/s	RXsens			-10.2 -10.5 -11.2	dBm	
Average Receiver Power	Rx _{MAX}			2	dBm	
Bit Error Rate	BER			E-12 E-6		2 3
LOS De-Assert	LOS _D			-13	dBm	
LOS Assert	LOS _A	-30			dBm	
LOS Hysteresis		0.5			dB	
Differential Data Output Swing	Vout.pp	300		850	mV	
105	High	2.0		Vcc	V	
LOS	Low	0		0.8	V	

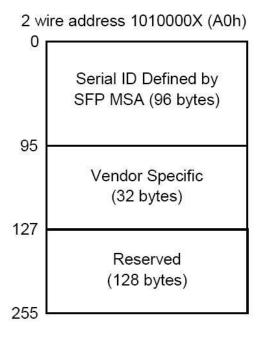
Notes:

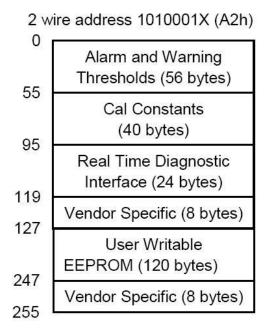
- 1. 8.5Gb.s Prbs7 for 8GFC, 14.025Gb/s Prbs31 for 16GFC, 28.05Gb/s Prbs31 for 32GFC;
- 2. For 32GFC with FEC, receiver sensitivity is defined at 10-6 BER level, not 10-12 BER level.

IV. Timing Requirement

Parameter	Symbol	Min.	Max.	Unit	Conditions
Tx_Disable assert time	t_off		100	μѕ	Rising edge of Tx_Disable to fall of output signal below 10% of nominal
Tx_Disable negate time	t_on		2	ms	Falling edge of Tx_Disable to rise of output signal above 90% of nominal. This only applies in normal operation, not during start up or fault recovery.
Time to initialize 2-wire interface	t_2w_start_up		300	ms	From power on or hot plug after the supply meeting <u>Table 8</u> .
Time to initialize	t_start_up		300	ms	From power supplies meeting <u>Table 8</u> or hot plug or Tx disable negated during power up, or Tx_Fault recovery, until non-cooled power level I part (or non-cooled power level II part already enabled at power level II for Tx_Fault recovery) is fully operational.
Time to initialize cooled module and time to power up a cooled module to Power Level II	t_start_up_cooled		90	S	From power supplies meeting <u>Table 8</u> or hot plug, or Tx disable negated during power up or Tx_Fault recovery, until cooled power level I part (or cooled power level II part during fault recovery) is fully operational. Also, from stop bit low-to-high SDA transition enabling Power Level II until cooled module is fully operational
Time to Power Up to Level II	t_power_level2		300	ms	From stop bit low-to-high SDA transition enabling power level II until non-cooled module is fully operational
Time to Power Down from Level II	t_power_down		300	ms	From stop bit low-to-high SDA transition dis- abling power level II until module is within power level I requirements
Tx_Fault assert	Tx_Fault_on		1	ms	From occurrence of fault to assertion of Tx_Fault
Tx_Fault assert for cooled module	Tx_Fault_on_cooled		50	ms	From occurrence of fault to assertion of Tx_Fault
Tx_Fault Reset	t_reset	10		μs	Time Tx_Disable must be held high to reset Tx_Fault
RS0, RS1 rate select timing for FC	t_RS0_FC, t_RS1_FC		500	μs	From assertion till stable output
RS0, RS1 rate select timing non FC	t_RS0, t_RS1		24	ms	From assertion till stable output
Rx_LOS assert delay	t_los_on		100	μs	From occurrence of loss of signal to assertion of Rx_LOS
Rx_LOS negate delay	t_los_off		100	μs	From occurrence of presence of signal to negation of Rx_LOS

V. Digital Diagnostic Specification

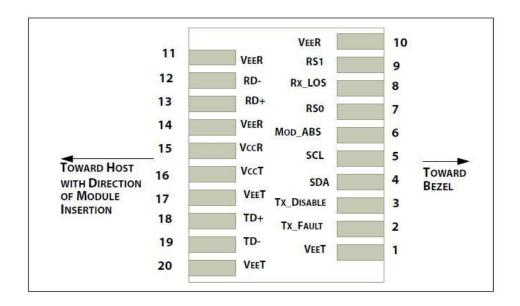

Parameter	Range	Unit	Accuracy	Calibration
Temperature	0 to +70	° C	±5° C	Internal/External
Voltage	3.0 to 3.6	V	±3%	Internal/External
Bias Current	0 to 20	mA	±10%	Internal/External
TX Power	-8 to 3	dBm	± 3dB	Internal/External
RX Power	-14 to 0	dBm	±3dB	Internal/External

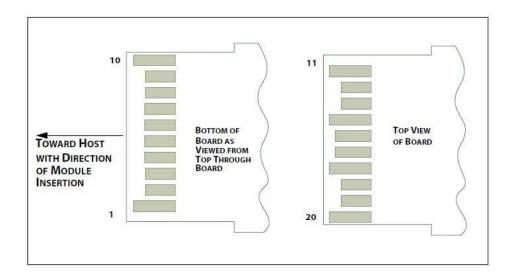

Digital Diagnostic Memory Map

The transceivers provide serial ID memory contents and diagnostic information about the present operating conditions by the 2-wire serial interface (SCL, SDA).

The diagnostic information with internal calibration or external calibration all are implemented, including received power monitoring, transmitted power monitoring, bias current monitoring, supply voltage monitoring and temperature monitoring.

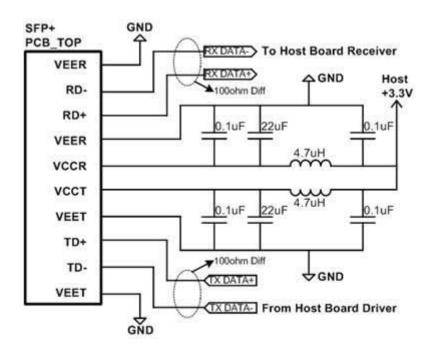
The digital diagnostic memory map specific data field defines as following..

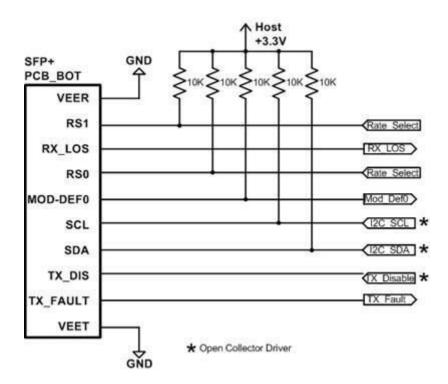

VI. Pin Descriptions

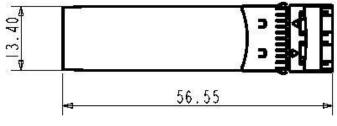

1	PIN	Logic	Symbol	Name/Description	Note
3 LVTTL-I TX_Dis Transmitter Disable; Turns off transmitter laser output 4 LVTTL-I/O SDA 2-Wire Serial Interface Data Line 5 LVTTL-I SCL 2-Wire Serial Interface Clock 6 MOD_ABS Module Definition, Grounded in the module 7 LVTTL-I RSO Receiver Rate Select 8 LVTTL-O RX_LOS Receiver Loss of Signal Indication Active LOW 9 LVTTL-I RS1 Transmitter Rate Select (not used) 10 VeeR Module Receiver Ground 1 11 VeeR Module Receiver Ground 1 12 CML-O RD- Receiver Inverted Data Output 13 CML-O RD+ Receiver Data Output 14 VeeR Module Receiver Ground 1 15 VccR Module Receiver 3.3 V Supply 16 VccT Module Receiver 3.3 V Supply 17 VeeT Module Receiver 3.3 V Supply 18 CML-I TD+ Transmitter Ground 1 19 CML-I TD- Transmitter Inverted Data Input	1		VeeT	Module Transmitter Ground	1
4 LVTTL-I/O SDA 2-Wire Serial Interface Data Line 5 LVTTL-I SCL 2-Wire Serial Interface Clock 6 MOD_ABS Module Definition, Grounded in the module 7 LVTTL-I RS0 Receiver Rate Select 8 LVTTL-O RX_LOS Receiver Loss of Signal Indication Active LOW 9 LVTTL-I RS1 Transmitter Rate Select (not used) 10 VeeR Module Receiver Ground 1 11 VeeR Module Receiver Ground 1 12 CML-O RD- Receiver Inverted Data Output 13 CML-O RD+ Receiver Data Output 14 VeeR Module Receiver Ground 1 15 VccR Module Receiver 3.3 V Supply 16 VccT Module Receiver 3.3 V Supply 17 VeeT Module Receiver 3.3 V Supply 18 CML-I TD+ Transmitter Non-Inverted Data Input 19 CML-I TD- Transmitter Inverted Data Input	2	LVTTL-O	TX_Fault	Module Transmitter Fault	2
5 LVTIL-I SCL 2-Wire Serial Interface Clock 6 MOD_ABS Module Definition, Grounded in the module 7 LVTIL-I RSO Receiver Rate Select 8 LVTIL-O RX_LOS Receiver Loss of Signal Indication Active LOW 9 LVTIL-I RS1 Transmitter Rate Select (not used) 10 VeeR Module Receiver Ground 1 11 VeeR Module Receiver Ground 1 12 CML-O RD- Receiver Inverted Data Output 13 CML-O RD+ Receiver Data Output 14 VeeR Module Receiver Ground 1 15 VccR Module Receiver Ground 1 16 VccT Module Receiver 3.3 V Supply 17 VeeT Module Receiver 3.3 V Supply 18 CML-I TD+ Transmitter Non-Inverted Data Input 19 CML-I TD- Transmitter Inverted Data Input	3	LVTTL-I	TX_Dis	Transmitter Disable; Turns off transmitter laser output	
6 MOD_ABS Module Definition, Grounded in the module 7 LVTTL-I RSO Receiver Rate Select 8 LVTTL-O RX_LOS Receiver Loss of Signal Indication Active LOW 9 LVTTL-I RS1 Transmitter Rate Select (not used) 10 VeeR Module Receiver Ground 1 11 VeeR Module Receiver Ground 1 12 CML-O RD- Receiver Inverted Data Output 13 CML-O RD+ Receiver Data Output 14 VeeR Module Receiver Ground 1 15 VccR Module Receiver Ground 1 16 VccT Module Receiver 3.3 V Supply 17 VeeT Module Receiver 3.3 V Supply 18 CML-I TD+ Transmitter Ground 1 19 CML-I TD- Transmitter Inverted Data Input	4	LVTTL-I/O	SDA	2-Wire Serial Interface Data Line	
7 LVTIL-I RS0 Receiver Rate Select 8 LVTIL-O RX_LOS Receiver Loss of Signal Indication Active LOW 9 LVTIL-I RS1 Transmitter Rate Select (not used) 10 VeeR Module Receiver Ground 1 11 VeeR Module Receiver Ground 1 12 CML-O RD- Receiver Inverted Data Output 13 CML-O RD+ Receiver Data Output 14 VeeR Module Receiver Ground 1 15 VccR Module Receiver Ground 1 16 VccR Module Receiver 3.3 V Supply 17 VeeT Module Receiver 3.3 V Supply 18 CML-I TD+ Transmitter Non-Inverted Data Input 19 CML-I TD- Transmitter Inverted Data Input	5	LVTTL-I	SCL	2-Wire Serial Interface Clock	
8 LVTTL-O RX_LOS Receiver Loss of Signal Indication Active LOW 9 LVTTL-I RS1 Transmitter Rate Select (not used) 10 VeeR Module Receiver Ground 1 11 VeeR Module Receiver Ground 1 12 CML-O RD- Receiver Inverted Data Output 13 CML-O RD+ Receiver Data Output 14 VeeR Module Receiver Ground 1 15 VccR Module Receiver Ground 1 16 VccT Module Receiver 3.3 V Supply 17 VeeT Module Transmitter Ground 1 18 CML-I TD+ Transmitter Non-Inverted Data Input 19 CML-I TD- Transmitter Inverted Data Input	6		MOD_ABS	Module Definition, Grounded in the module	
9 LVTTL-I RS1 Transmitter Rate Select (not used) 10 VeeR Module Receiver Ground 1 11 VeeR Module Receiver Ground 1 12 CML-O RD- Receiver Inverted Data Output 13 CML-O RD+ Receiver Data Output 14 VeeR Module Receiver Ground 1 15 VccR Module Receiver Ground 1 16 VccT Module Receiver 3.3 V Supply 17 VeeT Module Receiver 3.3 V Supply 18 CML-I TD+ Transmitter Inverted Data Input 19 CML-I TD- Transmitter Inverted Data Input	7	LVTTL-I	RS0	Receiver Rate Select	
10 VeeR Module Receiver Ground 1 11 VeeR Module Receiver Ground 1 12 CML-O RD- Receiver Inverted Data Output 13 CML-O RD+ Receiver Data Output 14 VeeR Module Receiver Ground 1 15 VccR Module Receiver Ground 1 16 VccT Module Receiver 3.3 V Supply 17 VeeT Module Transmitter Ground 1 18 CML-I TD+ Transmitter Non-Inverted Data Input 19 CML-I TD- Transmitter Inverted Data Input	8	LVTTL-O	RX_LOS	Receiver Loss of Signal Indication Active LOW	
11 VeeR Module Receiver Ground 1 12 CML-O RD- Receiver Inverted Data Output 13 CML-O RD+ Receiver Data Output 14 VeeR Module Receiver Ground 1 15 VccR Module Receiver 3.3 V Supply 16 VccT Module Receiver 3.3 V Supply 17 VeeT Module Transmitter Ground 1 18 CML-I TD+ Transmitter Non-Inverted Data Input 19 CML-I TD- Transmitter Inverted Data Input	9	LVTTL-I	RS1	Transmitter Rate Select (not used)	
12 CML-O RD- Receiver Inverted Data Output 13 CML-O RD+ Receiver Data Output 14 VeeR Module Receiver Ground 1 15 VccR Module Receiver 3.3 V Supply 16 VccT Module Receiver 3.3 V Supply 17 VeeT Module Transmitter Ground 1 18 CML-I TD+ Transmitter Non-Inverted Data Input 19 CML-I TD- Transmitter Inverted Data Input	10		VeeR	Module Receiver Ground	1
13 CML-O RD+ Receiver Data Output 14 VeeR Module Receiver Ground 1 15 VccR Module Receiver 3.3 V Supply 16 VccT Module Receiver 3.3 V Supply 17 VeeT Module Transmitter Ground 1 18 CML-I TD+ Transmitter Non-Inverted Data Input 19 CML-I TD- Transmitter Inverted Data Input	11		VeeR	Module Receiver Ground	1
14 VeeR Module Receiver Ground 1 15 VccR Module Receiver 3.3 V Supply 16 VccT Module Receiver 3.3 V Supply 17 VeeT Module Transmitter Ground 1 18 CML-I TD+ Transmitter Non-Inverted Data Input 19 CML-I TD- Transmitter Inverted Data Input	12	CML-O	RD-	Receiver Inverted Data Output	
15 VccR Module Receiver 3.3 V Supply 16 VccT Module Receiver 3.3 V Supply 17 VeeT Module Transmitter Ground 1 18 CML-I TD+ Transmitter Non-Inverted Data Input 19 CML-I TD- Transmitter Inverted Data Input	13	CML-O	RD+	Receiver Data Output	
16 VccT Module Receiver 3.3 V Supply 17 VeeT Module Transmitter Ground 1 18 CML-I TD+ Transmitter Non-Inverted Data Input 19 CML-I TD- Transmitter Inverted Data Input	14		VeeR	Module Receiver Ground	1
17 VeeT Module Transmitter Ground 1 18 CML-I TD+ Transmitter Non-Inverted Data Input 19 CML-I TD- Transmitter Inverted Data Input	15		VccR	Module Receiver 3.3 V Supply	
18 CML-I TD+ Transmitter Non-Inverted Data Input 19 CML-I TD- Transmitter Inverted Data Input	16		VccT	Module Receiver 3.3 V Supply	
19 CML-I TD- Transmitter Inverted Data Input	17		VeeT	Module Transmitter Ground	1
	18	CML-I	TD+	Transmitter Non-Inverted Data Input	
20 VeeT Module Transmitter Ground 1	19	CML-I	TD-	Transmitter Inverted Data Input	
	20		VeeT	Module Transmitter Ground	1

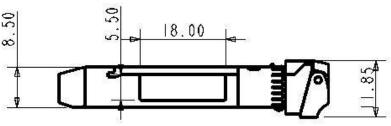
Notes:

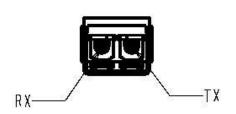
- 1. Module ground pins GND are isolated from the module case.
- 2. Shall be pulled up with 4.7K-10Kohms to a voltage between 3.15V and 3.45V on the host board..

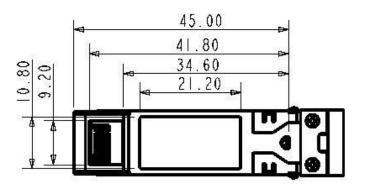





VII. Recommended Interface Circuit







VIII. Mechanical Dimensions

Test Center

FS.COM transceivers are tested to ensure connectivity and compatibility in our test center before shipped out. FS.COM test center is supported by a variety of mainstream original brand switches and groups of professional staff, helping our customers make the most efficient use of our products in their systems, network designs and deployments.

The original switches could be found nowhere but at FS.COM test center, eg: Juniper MX960 & EX 4300 series, Cisco Nexus 9396PX & Cisco ASR 9000 Series, HP 5900 Series & HP 5406R ZL2 V3(J9996A), Arista 7050S-64, Brocade ICX7750-26Q & ICX6610-48, Avaya VSP 7000 MDA 2, etc.

Cisco ASR 9000 Series(A9K-MPA-1X40GE)

ARISTA 7050S-64(DCS-7050S-64)

Juniper MX960

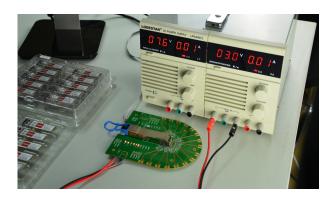
Brocade ICX 7750-26Q

Extreme Networks X670V VIM-40G4X

Mellanox M3601Q

Dell N4032F

HP 5406R ZL2 V3(J9996A)


AVAYA 7024XLS(7002QQ-MDA)

Test Assured Program

FS.COM truly understands the value of compatibility and interoperability to each optics. Every module FS.COM provides must run through programming and an extensive series of platform diagnostic tests to prove its performance and compatibility. In our test center, we care of every detail from staff to facilities—professionally trained staff, advanced test facilities and comprehensive original-brand switches, to ensure our customers to receive the optics with superior quality.

Our smart data system allows effective product management and quality control according to the unique serial number, properly tracing the order, shipment and every part. Our in-house coding facility programs all of our parts to standard OEM specs for compatibility on all major vendors and systems such as Cisco, Juniper, Brocade, HP, Dell, Arista and so on.

With a comprehensive line of original-brand switches, we can recreate an environment and test each optics in practical application to ensure quality and distance. The last test assured step to ensure our products to be shipped with perfect package.

Order Information

Part Number	Description
SFP28-32GSR-85	32G SFP28 850nm 100m DOM Transceiver
SFP28-32GLR-31	32G SFP28 1310nm 10km DOM Transceiver

The information in this document is subject to change without notice. FS has made all efforts to ensure the accuracy of the information, but all information in this document does not constitute any kind of warranty.