32GBASE-LR SFP28 1310nm 10km DOM Transceiver

SFP28-32GLR-31

Application

• 16GFC/32GFC Fibre channel

Features

- Supports up to 28.05Gbps bit rates
- Hot-Pluggable SFP28 footprints
- 1310nm DFB laser and PIN photodiode, Up to Compatible with RoHS 10km for SMF transmission
- Compliant with SFP+ MSA and SFF-8472 with duplex LC receptacle
- - Single +3.3V power supply

- Real Time Digital Diagnostic Monitoring
- Operating case temperature: Standard: 0 to +70° C

Description

The SFP28 transceivers are high performance, cost effective modules supporting data rate of 28.05Gbps and 10km transmission distance with SMF.

The transceiver consists of three sections: a DFB laser transmitter, a PIN photodiode integrated with a trans-impedance preamplifier (TIA) and MCU control unit. All modules satisfy class I laser safety requirements.

The transceivers are compatible with SFP Multi-Source Agreement and SFF-8472 digital diagnostics functions.

Block Diagram

Transceiver function diagram

I. Absolute Maximum Ratings

Parameter	Symbol	Min	Мах	Unit
Supply Voltage	Vcc	-0.5	4.5	V
Storage Temperature	Ts	-40	+85	° C
Operating Humidity	-	5	85	%

II. Recommended Operating Conditions

Parameter	Symbol	Min	Typical	Max	Unit
Operating Case Temperature	Тс	0		+70	°C
Power Supply Voltage	Vcc	3.135	3.30	3.465	V
Power Supply Current	lcc			400	mA
Data Rate			28.05		Gbps

III. Optical and Electrical Characteristics

Para	meter	Symbol	Min	Typical	Max	Unit	Note
			Transmitter				
Centre V	/avelength	λς	1270	1310	1350	nm	
Spectral Wi	dth(-20dB)	Δλ			1	nm	
Side-Mode Su	ppression Ratio	SMSR	30			dB	
Average O	utput Power	P _{out}	-7		2	dBm	1
Extincti	on Ration	ER	4			dB	
Data Input Sw	ving Differential	V _{IN}	180		850	mV	2
Input Differe	ntial Impedance	Z _{IN}	90	100	110	Ω	
TY Disable	Disable		2.0		Vcc	V	
TA Disable	Enable		0		0.8	V	
TX Fault	Fault		2.0		Vcc	V	
	Normal		0		0.8	V	

Receiver

Centre Wavelength	λς	1260	1600	nm	
Receiver Sensitivity			-11.6	dBm	3
Receiver Overload			2	dBm	3
LOS De-Assert	LOS _D		-15	dBm	
LOS Assert	LOS _A	-30		dBm	
LOS Hysteresis		0.5		dB	
Differential Data Output Swing	V _{out}	300	900	mV	4
LOS	High	2.0	Vcc	V	
	Low	0	0.8	V	

Notes:

1. The optical power is launched into SMF.

2. PECL input, internally AC-coupled and terminated.

3. Measured with a PRBS 2³¹-1 test pattern @25.08Gps, BER $\leq 1 \times 10^{-6}$.

4. Internally AC-coupled.

IV. Timing Requirement

Parameter	Symbol	Min	Typical	Мах	Unit
Tx Disable Negate Time	t_on			2	ms
Tx Disable Assert Time	t_off			100	μs
Time To Initialize, including Reset of Tx Fault	t_init			300	ms
Tx Fault Assert Time	t_fault			100	μs
Tx Disable to Reset	t_reset	10			μs
LOS Assert Time	t_loss_on			100	μs
LOS De-assert Time	t_loss_off			100	μs
Serial ID Clock Rate	f_serial_clock		100	400	KHz
MOD_DEF (0:2)-High	V _H	2		Vcc	V
MOD_DEF (0:2)-Low	VL			0.8	V

V. Diagnostic

Parameter	Range	Unit	Accuracy	Calibration
Temperature	0 to +70	°C	±3° C	Internal
Voltage	3.0 to 3.6	V	±3%	Internal
Bias Current	0 to 100	mA	±10%	Internal
TX Power	-7 to 2	dBm	±3dB	Internal
RX Power	-14 to 2	3.5	±3dB	Internal

Digital Diagnostic Memory Map

The transceivers provide serial ID memory contents and diagnostic information about the present operating conditions by the 2-wire serial interface (SCL, SDA).

The diagnostic information with internal calibration or external calibration all are implemented, including received power monitoring, transmitted power monitoring, bias current monitoring, supply voltage monitoring and temperature monitoring.

The digital diagnostic memory map specific data field defines as following..

V. Pin Descriptions

32GBASE-LR SFP28 1310NM 10KM DOM TRANSCEIVER

GFS

PIN	Signal Name	Description	Plug Seq	Notes
1	V _{EET}	Transmitter Ground	1	
2	TX FAULT	Transmitter Fault Indication	3	
3	TX DISABLE	Transmitter Disable	3	Note 2
4	SDA	SDA Serial Data Signal	3	
5	SCL	SCL Serial Clock Signal	3	
6	MOD_ABS	Module Absent. Grounded within the module	3	
7	RS0	Not Connected	3	
8	LOS	Loss of Signal	3	Note 3
9	RS1	Not Connected	3	
10	V _{EER}	Receiver ground	1	
11	V_{EER}	Receiver ground	1	
12	RD-	Inv. Received Data Out	3	Note 4
13	RD+	Received Data Out	3	Note 4
14	V_{EER}	Receiver ground	1	
15	V _{CCR}	Receiver Power Supply	2	
16	V _{CCT}	Transmitter Power Supply	2	
17	V _{EET}	Transmitter Ground	1	
18	TD+	Transmit Data In	3	Note 5
19	TD-	Inv. Transmit Data In	3	Note 5
20	V _{EET}	Transmitter Ground	1	

Notes:

1. Plug Seq.: Pin engagement sequence during hot plugging.

2. TX Fault is an open collector output, which should be pulled up with a $4.7k \sim 10k\Omega$ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; Logic 1 indicates a laser fault of some kind. In the low state, the output will be pulled to less than 0.8V.

3. LOS is open collector output. Should be pulled up with $4.7k \sim 10k\Omega$ on host board to a voltage between 2.0V and 3.6V. Logic 0 indicates normal operation; logic 1 indicates loss of signal.

4. RD-/+: These are the differential receiver outputs. They are internally AC-coupled 100 differential lines which should be terminated with 100Ω (differential) at the user SERDES.

5. TD-/+: These are the differential transmitter inputs. They are internally AC-coupled, differential lines with 100Ω differential termination inside the module.

VI. Recommended Interface Circuit

VII. Mechanical Dimensions

Test Center

FS.COM transceivers are tested to ensure connectivity and compatibility in our test center before shipped out. FS.COM test center is supported by a variety of mainstream original brand switches and groups of professional staff, helping our customers make the most efficient use of our products in their systems, network designs and deployments.

The original switches could be found nowhere but at FS.COM test center, eg: Juniper MX960 & EX 4300 series, Cisco Nexus 9396PX & Cisco ASR 9000 Series, HP 5900 Series & HP 5406R ZL2 V3(J9996A), Arista 7050S-64, Brocade ICX7750-26Q & ICX6610-48, Avaya VSP 7000 MDA 2, etc.

Cisco ASR 9000 Series(A9K-MPA-1X40GE)

ARISTA 7050S-64(DCS-7050S-64)

Juniper MX960

Brocade ICX 7750-26Q

Dell N4032F

Extreme Networks X670V VIM-40G4X

HP 5406R ZL2 V3(J9996A)

Mellanox M3601Q

AVAYA 7024XLS(7002QQ-MDA)

Test Assured Program

FS.COM truly understands the value of compatibility and interoperability to each optics. Every module FS.COM provides must run through programming and an extensive series of platform diagnostic tests to prove its performance and compatibility. In our test center, we care of every detail from staff to facilities—professionally trained staff, advanced test facilities and comprehensive original-brand switches, to ensure our customers to receive the optics with superior quality.

Our smart data system allows effective product management and quality control according to the unique serial number, properly tracing the order, shipment and every part.

Our in-house coding facility programs all of our parts to standard OEM specs for compatibility on all major vendors and systems such as Cisco, Juniper, Brocade, HP, Dell, Arista and so on.

With a comprehensive line of original-brand switches, we can recreate an environment and test each optics in practical application to ensure quality and distance.

The last test assured step to ensure our products to be shipped with perfect package.

Order Information

Part Number	Description
SFP28-32GSR-85	32G SFP28 850nm 100m DOM Transceiver
SFP28-32GLR-31	32G SFP28 1310nm 10km DOM Transceiver

ឋ

The information in this document is subject to change without notice. FS has made all efforts to ensure the accuracy of the information, but all information in this document does not constitute any kind of warranty.

Copyright © 2009-2021 FS.COM All Rights Reserved.