

200G QSFP56 to 4x50G SFP56 Passive Direct Attach Copper Breakout Cable

Application

- Data center & Networking Equipment
- Servers/Storage Devices
- High Performance Computing (HPC)
- Switches/Routers

Standards Compliance

- IEEE802.3Bj,By,IEEE802.3CD
- RoHS Compliant

Features

- Compliant with QSFP56 MSA Specification Rev 3.4
- SFF-8679 electrical interface compliant
- SFF-8636 management interface support
- Support 50G (PAM4) electrical data rates/channel
- I2C for EEPROM communication Pull to Release latch design
- Excellent EMI/EMC performance 360 degree cable shield termination
- Advantage dual side pre-solder automated assembly technologies
- Low loss, stronger mechanical features, more flexible
- QSFP56 modules will be backwards compatible, allowing them to support existing QSFP modules and provide flexibility for end users and system designers

Description

In an effort to keep up with the demands of higher performance and increasing amounts of memory bus bandwidth, FS designers are working to revise, extend and update the solution. FS 200G QSFP56 passive cable assembly can provide new generation performance of QSFP by higher date transfer rate. At the same time, FS QSFP56 TO 4SFP56 cable choose dual side drain cable and self-designed PCBA, provide low loss, less skew and better NEXT. 360 degree EMI crimping shielding and Zinc Die-cast shell designing make the product high-performance. And all the designing is based on the industry standard specifications, such as SFF-8679, SFF-8636 and QSFP56 TO 4SFP56 MSA specification rev 4.0.

Cable Assembly Characteristics

I. QSFP56 TO 4SFP56

Figure 1 - QSFP56 TO 4SFP56 Mechanical Structure

II. Mechanical Structure Characteristics Of Plug

- 1. Raw Cable -- Support 28~30AWG, 100ohm, Silver plated, vw-1, RoHS2.0.
- 2. PCB High Speed Very low loss material M6,8 Layers Design; Gold finger plated gold 30u" min., nickel plated 150~700u"; pad: immersion gold 1u" min., nickel plated 100u"min. 94v-0, RoHS2.0;
- 3. Upper shell -- Zinc Die-cast, with Cu plated 280u" min. overall and Ni plated 120u" min.
- 4. Bottom shell -- Zinc Die-cast, with Cu plated 280u" min. overall and Ni plated 120u" min.
- 5. Latch-- Stainless steel ,SUS304 + PA66 CM3004,black;
- 6. Spring -- Stainless steel ,SUS301EH;
- 7. Rivet -- Stainless Steel, SUS304;
- 8. SR (Strain Relief) -- PVC, 45P, BLACK, RoHS2.0.
- 9. Dust Cover—PVC, 60P, Blue, ANTI-STATIC, RoHS2.0.

III. Electrical Design

The electrical design of the QSFP56 TO 4SFP56 cable assembly is fully compliant to QSFP56 TO 4SFP56 Hardware Rev4.0 specifications. The electrical design included: a low loss design printed circuit board, DC block capacitances in the Rx channel, and EEprom chips for the management. Pin layout and function definition are shown in Figure 2 and Table 1.

Top side viewed from top

Figure 2 - QSFP56 TO 2 QSFP Pin Define

Table 1 - QSFP56 TO 4SFP56 Pin Function Definition

Pin	Logic	Symbol	Description	Notes
1		GND	Ground	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input	
4		GND	Ground	1
5	CML-I	Tx4n	Transmitter Inverted Data Input	
6	CML-I	Tx4p	Transmitter Non-Inverted Data Input	
7		GND	Ground	1
8	LVTTL-I	ModSelL	Module Select	
9	LVTTL-I	ResetL	Module Reset	
10		VccRx	+3.3 V Power Supply Receiver	2
11	LVCMOS-I/O	SCL	2-wire serial interface clock	
12	LVCMOS-I/O	SDA	2-wire serial interface data	
13		GND	Ground	1
14	CML-O	Rx3p	Receiver Non-Inverted Data Output	
15	CML-O	Rx3n	Receiver Inverted Data Output	
16		GND	Ground	1
17	CML-O	Rx1p	Receiver Non-Inverted Data Output	
18	CML-O	Rx1n	Receiver Inverted Data Output	
19		GND	Ground	1
20		GND	Ground	1
21	CML-O	Rx2n	Receiver Inverted Data Output	
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	
23		GND	Ground	1
24	CML-O	Rx4n	Receiver Inverted Data Output	

200G QSFP56 TO 4X50G SFP56 PASSIVE DIRECT ATTACH COPPER BREAKOUT CABLE

25	CML-O	Rx4p	Receiver Non-Inverted Data Output	
26		GND	Ground	1
27	LVTTL-O	ModPrsL	Module Present	
28	LVTTL-O	IntL	Interrupt	
29		VccTx	+3.3V Power supply transmitter	2
30		Vcc1	+3.3V Power supply	2
31	LVTTL-I	InitMode	Initialization mode; In legacy QSFP applications, the InitMode pad is called LPMODE	
32		GND	Ground	1
33	CML-I	Тх3р	Transmitter Non-Inverted Data Input	
34	CML-I	Tx3n	Transmitter Inverted Data Input	
35		GND	Ground	1
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	
37	CML-I	Tx1n	Transmitter Inverted Data Input	
38		GND	Ground	1
39		GND	Ground	1
40	CML-I	Тхбп	Transmitter Inverted Data Input	
41	CML-I	Тхбр	Transmitter Non-Inverted Data Input	
42		GND	Ground	1
43	CML-I	Tx8n	Transmitter Inverted Data Input	
44	CML-I	Тх8р	Transmitter Non-Inverted Data Input	
45		GND	Ground	1
46		Reserved	For future use	3
47		VS1	Module Vendor Specific 1	3
48		VccRx1	3.3V Power Supply	2

49		VS2	Module Vendor Specific 2	3
50		VS3	Module Vendor Specific 3	3
51		GND	Ground	1
52	CML-O	Rx7p	Receiver Non-Inverted Data Output	
53	CML-O	Rx7n	Receiver Inverted Data Output	
54		GND	Ground	1
55	CML-O	Rx5p	Receiver Non-Inverted Data Output	
56	CML-O	Rx5n	Receiver Inverted Data Output	
57		GND	Ground	1
58		GND	Ground	1
59	CML-O	Rx6n	Receiver Inverted Data Output	
60	CML-O	Rx6р	Receiver Non-Inverted Data Output	
61		GND	Ground	1
62	CML-O	Rx8n	Receiver Inverted Data Output	
63	CML-O	Rx8p	Receiver Non-Inverted Data Output	
64		GND	Ground	1
65		NC	No Connect	3
66		Reseved	For future use	3
67		VccTx1	3.3V Power Supply	2
68		Vcc2	3.3V Power Supply	2
69		Reseved	For future use	3
70		GND	Ground	1
71	CML-I	Tx7p	Transmitter Non-Inverted Data Input	

72	CML-I	Tx7n	Transmitter Inverted Data Input	
73		GND	Ground	1
74	CML-I	Tx5p	Transmitter Non-Inverted Data Input	
75	CML-I	Tx5n	Transmitter Inverted Data Input	
76		GND	Ground	1

Notes:

- 1.QSFP56 TO 2 QSFP uses common ground (GND) for all signals and supply (power). All are common within the QSFP56 TO 2 QSFP module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal-common ground plane.
- 2.VccRx, VccRx1, Vcc1, Vcc2, VccTx and VccTx1 shall be applied concurrently. Requirements defined for the host side of the Host Card Edge Connector are listed in Table 6. VccRx, VccRx1, Vcc1, Vcc2, VccTx and VccTx1 may be internally connected within the module in any combination. The connector Vcc pins are each rated for a maximum current of 1000 mA
- 3.All Vendor Specific, Reserved and No Connect pins may be terminated with 50 ohms to ground on the host. Pad 65 (No Connect) shall be left unconnected within the module. Vendor specific and Reserved pads shall have an impedance to GND that is greater than 10 kOhms and less than 100 pF.
- 4.Plug Sequence specifies the mating sequence of the host connector and module. The sequence is 1A, 2A, 3A, 1B, 2B, 3B. (see Figure 2 for pad locations) Contact sequence A will make, then break contact with additional QSFP56 TO 2 QSFP pads. Sequence 1A, 1B will then occur simultaneously, followed by 2A, 2B, followed by 3A,3B.

IV. Host PCB SFP56 pad contact assignment

V. SFP56 Pin Descriptions

Pin	Logic	Symbol	Description	Notes
1		VeeT	Transmitter Ground	
2	LV-TTL-O	TX_Fault	N/A	1
3	LV-TTL-I	TX_DIS	Transmitter Disable	2
4	LV-TTL-I/O	SDA	Tow Wire Serial Data	
5	LV-TTL-I	SCL	Tow Wire Serial	
6		MOD_DEF0	Module present,	
7	LV-TTL-I	RSO	N/A	1
8	LV-TTL-O	LOS	LOS of Signal	2
9	LV-TTL-I	RS1	N/A	1
10		VeeR	Reciever Ground	
11		VeeR	Reciever Ground	
12	CML-O	RD-	Reciever Data Inverted	
13	CML-O	RD+	Reciever Data	
14		VeeR	Reciever Ground	
15		VccR	Reciever Supply 3.3V	
16		VccT	Transmitter Supply	
17		VeeT	Transmitter Ground	
18	CML-I	TD+	Transmitter Data	
19	CML_I	TD-	Transmitter Data	
20		VeeT	Transmitter Ground	

Notes:

1. Signals not supported in SFP56 Copper pulled-downto VeeT with 30K ohms resistor

2. Passive cable assemblies do not support LOS and TX_DIS

VI. Schematic

CONN-P0 SHELL			CONN-P1P8 SHELL		
		SHIELD BRAIDING			
GND		Ι <u></u>		GND(RX)	
TXin	P37	1 / 1	P12	RDn	
TX1p	P36	1	P13	RDp	
GND		1V	1	GND(RX)	P1
GND		1		GND(TX)	
RX1p	P17	1	P18	TDp	
RX1n	P18	1	P19	TDn	
GND		1V		GND(TX)	
GND		1		GND(RX)	
TX2n	P2	1 (1	P12	RDn	
TX2p	P3	1	P13	RDp	
GND	1.00	1V		GND(RX)	P2
GND		<u>مــــــــــــــــــــــــــــــــــــ</u>		GND(TX)	
RX2p	P22	1 (1	P18	TDp	
RX2n	P21	1	P19	TDn	
GND		1V		GND(TX)	
GND		1		GND(RX)	
TX3n	P34	1	P12	RDn	
TX3p	P33	l	P13	RDp	
GND		1V		GND(RX)	P3
GND			_	GND(TX)	
RX3p	P14	1 (1	P18	TDp	
RX3n	P15		P19	TDn	
GND	1011000	1V	_	GND(TX)	
GND		1		GND(RX)	
TX4n	P5	1/ \	P12	RDn	
TX4p	P6	1	P13	RDp	
GND	11111	1V		GND(RX)	P4
GND		1		GND(TX)	
RX4p	P25	1	P18	TDp	
RX4n	P24	1	P19	TDn	
GND		1V		GND(TX)	

VII. Bulk Cable Characteristics

The structure of the cable is shown as the figure , the characteristics of the bulk cable are listed below.

SECTIONAL DRAWING:

1.Voltage rating: 30V

2.Temperature rating: 80°C;

3.Impedance: Differential mode: 100 +5/-5 ohm @TDR;

4. Delay Skew(INTRA-SKEW): 30ps/5m max;

5. Signal Twin-ax pair cable: Solid Ag plated copper conductor;

6. Braid shielding coverage 85% min.

7. Jacket material: PVC

Test Center

FS.COM transceivers are tested to ensure connectivity and compatibility in our test center before shipped out. FS.COM test center is supported by a variety of mainstream original brand switches and groups of professional staff, helping our customers make the most efficient use of our products in their systems, network designs and deployments.

The original switches could be found nowhere but at FS.COM test center, eg: Juniper MX960 & EX 4300 series, Cisco Nexus 9396PX & Cisco ASR 9000 Series, HP 5900 Series & HP 5406R ZL2 V3(J9996A), Arista 7050S-64, Brocade ICX7750-26Q & ICX6610-48, Avaya VSP 7000 MDA 2, etc.

Cisco ASR 9000 Series(A9K-MPA-1X40GE)

Brocade ICX 7750-26Q

Dell N4032F

ARISTA 7050S-64(DCS-7050S-64)

Extreme Networks X670V VIM-40G4X

HP 5406R ZL2 V3(J9996A)

Juniper MX960

Mellanox M3601Q

AVAYA 7024XLS(7002QQ-MDA)

Test Assured Program

FS.COM truly understands the value of compatibility and interoperability to each optics. Every module FS.COM provides must run through programming and an extensive series of platform diagnostic tests to prove its performance and compatibility. In our test center, we care of every detail from staff to facilities—professionally trained staff, advanced test facilities and comprehensive original-brand switches, to ensure our customers to receive the optics with superior quality.

Our smart data system allows effective product management and quality control according to the unique serial number, properly tracing the order, shipment and every part.

With a comprehensive line of original-brand switches, we can recreate an environment and test each optics in practical application to ensure quality and distance.

The last test assured step to ensure our products to be shipped with perfect package.

Order Information

Part Number	Data Rate	Length	Wire Gauge	Connector Type	Temp.Range	Cable Jacket
Q-4S56PC005	Up to 200G	0.5m	AWG30	Passive Copper	0-70°C	PVC
Q-4S56PC01	Up to 200G	1m	AWG30	Passive Copper	0-70°C	PVC
Q-4S56PC02	Up to 200G	2m	AWG28	Passive Copper	0-70°C	PVC
Q-4S56PC03	Up to 200G	3m	AWG28	Passive Copper	0-70°C	PVC

公

The information in this document is subject to change without notice. FS has made all efforts to ensure the accuracy of the information, but all information in this document does not constitute any kind of warranty.

Copyright © 2009-2022 FS.COM All Rights Reserved.