# 100GBASE-4WDM-10 QSFP28 1310nm 10km DOM Transceiver

QSFP28-EIR4-100G



# Application

- Data Center
- 100G Ethernet
- 100G Campus Link
- Enterprise networking

### **Features**

- Compliant to QSFP28 Extended CWDM4 MSA
- Four CWDM lanes MUX/DEMUX design Maximum power consumption 3.5W
- Supports 103.1Gb/s aggregate bit rate
- Up to 10km transmission on single mode fiber (SMF) with RS-FEC
- Operating case temperature: 0 to 70° C
- 4x25G electrical interface (OIF CEI-28G-VSR)
- LC duplex connector
- RoHS compliant

# Description

This product is a transceiver module designed for low cost 10km optical communication applications. The module converts 4 inputs channels (ch) of 25Gb/s electrical data to 4 CWDM optical signals, and multiplexes them into a single channel for 100Gb/s optical transmission. Reversely, on the receiver side, the module optically de-multiplexes a 100Gb/s input into 4 CWDM channels signals, and converts them to 4 channel output electrical data.

The central wavelengths of the 4 CWDM channels are 1271, 1291, 1311 and 1331 nm as members of the CWDM wavelength grid defined in ITU-T G.694.2. It contains a duplex LC connector for the optical interface and a 38-pin connector for the electrical interface. To minimize the optical dispersion in the long-haul system, single-mode fiber (SMF) has to be applied in this module. Host FEC is required to support up to 10km fiber transmission.

The product is designed with form factor, optical/electrical connection and digital diagnostic interface according to the QSFP28 Multi-Source Agreement (MSA). It has been designed to meet the harshest external operating conditions including temperature, humidity and EMI interference.

# **Product Specifications**

## I. Recommended Operating Conditions and Power Supply Requirements

| Parameter                  | Symbol | Min   | Тур.     | Max     | Unit | Ref. |
|----------------------------|--------|-------|----------|---------|------|------|
| Operating Case Temperature | ТОР    | 0     |          | 70      | degC |      |
| Power Supply Voltage       | VCC    | 3.135 | 3.3      | 3.465   | V    |      |
| Data Rate, each Lane       |        |       | 25.78125 |         | Gb/s |      |
| Data Rate Accuracy         |        | -100  |          | 100     | ppm  |      |
| Pre-FEC Bit Error Ratio    |        |       |          | 5x10-5  |      |      |
| Post-FEC Bit Error Ratio   |        |       |          | 1x10-12 |      | 1    |
| Control Input Voltage High |        | 2     |          | Vcc     | V    |      |
| Control Input Voltage Low  |        | 0     |          | 0.8     | V    |      |
| Link Distance with G.652   | D      | 0.002 |          | 10      | km   | 2    |

#### Notes:

1.FEC provided by host system.

2.FEC required on host system to support maximum distance.

# II. Absolute Maximum Ratings

| Parameter                                  | Symbol | Min  | Тур. | Мах | Unit | Ref. |
|--------------------------------------------|--------|------|------|-----|------|------|
| Storage Temperature                        | Ts     | -40  |      | 85  | degC |      |
| Case Operating Temperature                 | ТОР    | 0    |      | 70  | degC |      |
| Power Supply Voltage(non-<br>condensation) | VCC    | -0.5 |      | 3.6 | V    |      |
| <b>Relative Humidity</b>                   | RH     | 0    |      | 85  | %    |      |
| Damage Threshold , each lane               | THd    | 3.5  |      |     | dBm  |      |

### Note:

1. Non-condensing.

# III. Electrical Characteristics (TOP= 0 to 70 $^{\circ}$ C, VCC = 3.14 to 3.46 Volts)

| Parameter         | Symbol | Min | Тур. | Max  | Unit | Ref. |
|-------------------|--------|-----|------|------|------|------|
| Power Consumption |        |     |      | 3.5  | W    |      |
| Supply Current    | lcc    |     |      | 1.06 | А    |      |

### Transmitter

| Overload Differential Voltage pk-<br>pk                                                                   | TP1a | 900                                               |                                   | mV |         |
|-----------------------------------------------------------------------------------------------------------|------|---------------------------------------------------|-----------------------------------|----|---------|
| Common Mode Voltage (Vcm)                                                                                 | TP1  | -350                                              | 2850                              | mV | 1       |
| Differential Termination<br>Resistance Mismatch                                                           | TP1  |                                                   | 10                                | %  | At 1MHz |
| Differential Return Loss (SDD11)                                                                          | TP1  |                                                   | See CEI-28G-VSR<br>Equation 13-19 | dB |         |
| Common Mode to Differential<br>conversion and Differential to<br>Common Mode conversion<br>(SDC11, SCD11) | TP1  |                                                   | See CEI-28G-VSR<br>Equation 13-20 | dB |         |
| Stressed Input Test                                                                                       | TP1a | See CEI-<br>28G-VSR<br>Section<br>13.3.11.<br>2.1 |                                   |    |         |
| Common Mode to Differential<br>conversion and Differential to                                             | TP1  |                                                   | See CEI-28G-VSR<br>Equation 13-20 | dB |         |

Common Mode conversion (SDC11, SCD11)

# Receiver(each Lane)

| Differential Voltage, pk-pk                                                                               | TP4 |      | 900                                      | mV |         |
|-----------------------------------------------------------------------------------------------------------|-----|------|------------------------------------------|----|---------|
| Common Mode Voltage (Vcm)                                                                                 | TP4 | -350 | 2850                                     | mV | 1       |
| Common Mode Noise, RMS                                                                                    | TP4 |      | 17.5                                     | mV |         |
| Differential Termination Resistance<br>Mismatch                                                           | TP4 |      | 10                                       | %  | At 1MHz |
| Differential Return Loss (SDD22)                                                                          | TP4 |      | See CEI-<br>28G-VSR<br>Equation<br>13-19 | dB |         |
| Common Mode to Differential<br>conversion and Differential to<br>Common Mode conversion (SDC22,<br>SCD22) | TP4 |      | See CEI-<br>28G-VSR<br>Equation<br>13-21 | dB |         |
| Common Mode Return Loss (SCC22)                                                                           | TP4 |      | -2                                       | dB | 2       |
| Transition Time, 20 to 80%                                                                                | TP4 | 9.5  |                                          | ps |         |
| Vertical Eye Closure (VEC)                                                                                | TP4 |      | 5.5                                      | dB |         |
| Eye Width at 10-15 probability<br>(EW15)                                                                  | TP4 | 0.57 |                                          | UI |         |
| Eye Height at 10-15 probability<br>(EH15)                                                                 | TP4 | 228  |                                          | mV |         |

#### Notes:

1. Vcm is generated by the host. Specification includes effects of ground offset voltage.

2. From 250MHz to 30GHz.

# IV. Optical Characteristics (TOP = 0 to 70 $^{\circ}$ C, VCC = 3.14 to 3.46 V)

| Parameter             | Symbol | Min    | Тур. | Max    | Unit | Note |
|-----------------------|--------|--------|------|--------|------|------|
| Wavelength Assignment | LO     | 1264.5 | 1271 | 1277.5 | nm   |      |
|                       | L1     | 1284.5 | 1291 | 1297.5 | nm   |      |
|                       | L2     | 1304.5 | 1311 | 1317.5 | nm   |      |
|                       | L3     | 1324.5 | 1331 | 1337.5 | nm   |      |

### Transmitter (Tx)

| Side Mode Suppression Ratio                                                         | SMSR             | 30   |     | dB  |   |
|-------------------------------------------------------------------------------------|------------------|------|-----|-----|---|
| Total Average Launch Power                                                          | P <sub>T</sub>   |      | 8.5 | dBm |   |
| Average Launch Power,<br>each Lane                                                  | P <sub>AVG</sub> | -6.5 | 2.5 | dBm |   |
| Optical Modulation Amplitude<br>(OMA), each Lane                                    | P <sub>oma</sub> | -4.0 | 2.5 | dBm | 1 |
| Launch Power in OMA minus<br>Transmitter and Dispersion Penalty<br>(TDP), each Lane |                  | -5.0 |     | dBm |   |
| Difference in launch power between<br>any two lanes (Average<br>and OMA)            |                  |      | 6.0 | dB  |   |
| TDP, each Lane                                                                      | TDP              |      | 3.0 | dB  |   |
| Extinction Ratio                                                                    | ER               | 3.5  |     | dB  |   |
| Optical Return Loss Tolerance                                                       | TOL              |      | 20  | dB  |   |
| Transmitter Reflectance                                                             | R <sub>T</sub>   |      | -20 | dB  |   |

| Average Launch Power OFF                             |               |                 |                      | -30     | dBm |                     |
|------------------------------------------------------|---------------|-----------------|----------------------|---------|-----|---------------------|
|                                                      |               |                 |                      |         |     |                     |
| Transmitter Optical Eye Mask                         |               | {0.31, 0.4, 0.4 | 45, 0.34, 0.38, 0.4} |         |     | 2                   |
|                                                      | Rece          | iver (Rx)       |                      |         |     |                     |
| Damage Threshold, each Lane                          | THd           | 3.5             |                      |         | dBm | 3                   |
| Average Receive Power, each Lane                     |               | -13.0           |                      | 2.5     | dBm |                     |
| Receive Power (OMA), each Lane                       |               |                 |                      | 2.5     | dBm |                     |
| Receiver Sensitivity (OMA), each<br>Lane             |               |                 |                      | -11.5   | dBm | for BER =<br>5x10-5 |
| Stressed Receiver Sensitivity (OMA),<br>each Lane    |               |                 |                      | -9.1    | dBm | 4                   |
| Receiver Reflectance                                 | RR            |                 |                      | -26     | dB  |                     |
| LOS Assert                                           | LOSA          | -30             |                      |         | dBm |                     |
| LOS Deassert                                         | LOSD          |                 |                      | -15     | dBm |                     |
| LOS Hysteresis                                       | LOSH          | 0.5             |                      |         | dB  |                     |
| Conditions o                                         | f Stress Rece | iver Sensiti    | ivity Test (Not      | e 5)    |     |                     |
| Vertical eye closure penalty, each<br>Iane           | VEC           |                 | 1.9                  |         | dB  |                     |
| Stressed Eye J2 Jitter, each Lane                    |               |                 | 0.33                 |         | UI  |                     |
| Stressed Eye J4 Jitter, each Lane                    |               |                 | 0.48                 |         | UI  |                     |
| SRS eye mask definition { X1, X2, X3,<br>Y1, Y2, Y3} |               | {0.39,          | 0.5, 0.5, 0.39, 0.39 | 0, 0.4} |     |                     |

### Notes:

- 1. Even if the TDP < 1.0 dB, the OMA min must exceed the minimum value specified here.
- 2. Hit ratio 5x10-5.
- 3. The receiver shall be able to tolerate, without damage, continuous exposure to a modulated optical input signal having this power level on one lane. The receiver does not have to operate correctly at this input power.
- 4. Measured with conformance test signal at receiver input for BER = 5x10-5.
- 5. Vertical eye closure penalty, stressed eye J2 jitter, and stressed eye J4 jitter are test conditions for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

# **V. Digital Diagnostic Specifications**

The following digital diagnostic characteristics are defined over the normal operating conditions unless otherwise specified.

| Parameter                                  | Symbol       | Min  | Тур. | Max | Units | Ref.                                |
|--------------------------------------------|--------------|------|------|-----|-------|-------------------------------------|
| Temperature monitor absolute<br>error      | DMI_Temp     | -3   |      | 3   | degC  | Over operating<br>temperature range |
| Supply voltage monitor absolute<br>error   | DMI_VCC      | -0.1 |      | 0.1 | V     | Over full operating range           |
| Channel RX power monitor<br>absolute error | DMI_RX_Ch    | -2   |      | 2   | dB    | 1                                   |
| Channel Bias current monitor               | DMI_Ibias_Ch | -10% |      | 10% | mA    |                                     |
| Channel TX power monitor<br>absolute error | DMI_TX_Ch    | -2   |      | 2   | dB    | 1                                   |

#### Note:

1.Due to measurement accuracy of different single mode fibers, there could be an additional +/-1 dB fluctuation, or a +/- 3 dB total accuracy.

# **VI. Pin Description**

| Pin | Symbol  | Name/Description                     | Ref. |
|-----|---------|--------------------------------------|------|
| 1   | GND     | Ground                               | 1    |
| 2   | Tx2n    | Transmitter Inverted Data Input      |      |
| 3   | Tx2p    | Transmitter Non-Inverted Data output |      |
| 4   | GND     | Ground                               | 1    |
| 5   | Tx4n    | Transmitter Inverted Data Input      |      |
| 6   | Tx4p    | Transmitter Non-Inverted Data output |      |
| 7   | GND     | Ground                               | 1    |
| 8   | ModSelL | Module Select                        |      |
| 9   | ResetL  | Module Reset                         |      |
| 10  | VccRx   | +3.3V Power Supply Receiver          | 2    |
| 11  | SCL     | 2-Wire Serial Interface Clock        |      |
| 12  | SDA     | 2-Wire Serial Interface Data         |      |
| 13  | GND     | Ground                               |      |
| 14  | Rx3p    | Receiver Non-Inverted Data Output    |      |
| 15  | Rx3n    | Receiver Inverted Data Output        |      |
| 16  | GND     | Ground                               | 1    |
| 17  | Rx1p    | Receiver Non-Inverted Data Output    |      |
| 18  | Rx1n    | Receiver Inverted Data Output        |      |
| 19  | GND     | Ground                               | 1    |
| 20  | GND     | Ground                               | 1    |



| Pin | Symbol  | Name/Description                    | Ref. |
|-----|---------|-------------------------------------|------|
| 21  | Rx2n    | Receiver Inverted Data Output       |      |
| 22  | Rx2p    | Receiver Non-Inverted Data Output   |      |
| 23  | GND     | Ground                              | 1    |
| 24  | Rx4n    | Receiver Inverted Data Output       | 1    |
| 25  | Rx4p    | Receiver Non-Inverted Data Output   |      |
| 26  | GND     | Ground                              | 1    |
| 27  | ModPrsL | Module Present                      |      |
| 28  | IntL    | Interrupt                           |      |
| 29  | VccTx   | +3.3 V Power Supply transmitter     | 2    |
| 30  | Vcc1    | +3.3 V Power Supply                 | 2    |
| 31  | LPMode  | Low Power Mode                      |      |
| 32  | GND     | Ground                              | 1    |
| 33  | Тх3р    | Transmitter Non-Inverted Data Input |      |
| 34  | Tx3n    | Transmitter Inverted Data Output    |      |
| 35  | GND     | Ground                              | 1    |
| 36  | Tx1p    | Transmitter Non-Inverted Data Input |      |
| 37  | Tx1n    | Transmitter Inverted Data Output    |      |
| 38  | GND     | Ground                              | 1    |

### Notes:

- 1.GND is the symbol for signal and supply (power) common for QSFP28 modules. All are common within the QSFP28 module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal common ground plane.
- 2. VccRx, Vcc1 and VccTx are the receiving and transmission power suppliers and shall be applied concurrently. Recommended host board power supply filtering is shown in Figure 3 below. Vcc Rx, Vcc1 and Vcc Tx may be internally connected within the QSFP28 transceiver module in any combination. The connector pins are each rated for a maximum current of 500mA.

### **VII**.Pin Assignment and Description



Top Side Viewed from Top

Bottom Side Viewed from Bottom

# VIII. Recommended Power Supply Filter



# **IX. Mechanical Dimensions**





# **Test Center**

FS.COM transceivers are tested to ensure connectivity and compatibility in our test center before shipped out. FS.COM test center is supported by a variety of mainstream original brand switches and groups of professional staff, helping our customers make the most efficient use of our products in their systems, network designs and deployments.

The original switches could be found nowhere but at FS.COM test center, eg: Juniper MX960 & EX 4300 series, Cisco Nexus 9396PX & Cisco ASR 9000 Series, HP 5900 Series & HP 5406R ZL2 V3(J9996A), Arista 7050S-64, Brocade ICX7750-26Q & ICX6610-48, Avaya VSP 7000 MDA 2, etc.



Cisco ASR 9000 Series(A9K-MPA-1X40GE)



Brocade ICX 7750-26Q



Dell N4032F



ARISTA 7050S-64(DCS-7050S-64)



Extreme Networks X670V VIM-40G4X



HP 5406R ZL2 V3(J9996A)



Juniper MX960







AVAYA 7024XLS(7002QQ-MDA)

## **Test Assured Program**

FS.COM truly understands the value of compatibility and interoperability to each optics. Every module FS.COM provides must run through programming and an extensive series of platform diagnostic tests to prove its performance and compatibility. In our test center, we care of every detail from staff to facilities—professionally trained staff, advanced test facilities and comprehensive original-brand switches, to ensure our customers to receive the optics with superior quality.



Our smart data system allows effective product management and Our in-house coding facility programs all of our parts to standard tracking the order, shipment and every part.

quality control according to the unique serial number, properly OEM specs for compatibility on all major vendors and systems such as Cisco, Juniper, Brocade, HP, Dell, Arista and so on.



With a comprehensive line of original-brand switches, we can The last test assured step to ensure our products to be shipped recreate an environment and test each optics in practical with perfect package. application to ensure quality and distance.



公





The information in this document is subject to change without notice. FS has made all efforts to ensure the accuracy of the information, but all information in this document does not constitute any kind of warranty.

Copyright © 2009-2022 FS.COM All Rights Reserved.